00491nas a2200145 4500008004100000022001400041245009400055210006900149300001400218490000700232100001900239700001900258700002000277856004800297 2016 eng d a0176-427600aHankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots0 aHankel determinant approach to generalized VorobevYablonski poly a417–4530 v441 aBalogh, Ferenc1 aBertola, Marco1 aBothner, Thomas uhttp://dx.doi.org/10.1007/s00365-016-9328-400527nas a2200157 4500008004100000022001400041245010200055210006900157300001400226490000700240100001900247700001900266700002000285700002400305856004000329 2015 eng d a0010-364000aStrong asymptotics of the orthogonal polynomials with respect to a measure supported on the plane0 aStrong asymptotics of the orthogonal polynomials with respect to a112–1720 v681 aBalogh, Ferenc1 aBertola, Marco1 aLee, Seung-Yeop1 aMcLaughlin, Kenneth uhttp://dx.doi.org/10.1002/cpa.2154101351nas a2200133 4500008004100000245008400041210007000125260003900195520087300234100001901107700001901126700002101145856005101166 2014 en d00aFinite dimensional Kadomtsev-Petviashvili τ-functions. I. Finite Grassmannians0 aFinite dimensional KadomtsevPetviashvili τfunctions I Finite Gra bAmerican Institute of Physics Inc.3 aWe study τ-functions of the Kadomtsev-Petviashvili hierarchy in terms of abelian group actions on finite dimensional Grassmannians, viewed as subquotients of the Hilbert space Grassmannians of Sato, Segal, and Wilson. A determinantal formula of Gekhtman and Kasman involving exponentials of finite dimensional matrices is shown to follow naturally from such reductions. All reduced flows of exponential type generated by matrices with arbitrary nondegenerate Jordan forms are derived, both in the Grassmannian setting and within the fermionic operator formalism. A slightly more general determinantal formula involving resolvents of the matrices generating the flow, valid on the big cell of the Grassmannian, is also derived. An explicit expression is deduced for the Plücker coordinates appearing as coefficients in the Schur function expansion of the τ-function.1 aBalogh, Ferenc1 aFonseca, Tiago1 aHarnad, John, P. uhttp://urania.sissa.it/xmlui/handle/1963/3495200917nas a2200121 4500008004100000245006300041210006300104260002500167520051500192100001900707700001800726856005100744 2014 en d00aWeighted quantile correlation test for the logistic family0 aWeighted quantile correlation test for the logistic family bUniversity of Szeged3 aWe summarize the results of investigating the asymptotic behavior of the weighted quantile correlation tests for the location-scale family associated to the logistic distribution. Explicit representations of the limiting distribution are given in terms of integrals of weighted Brownian bridges or alternatively as infinite series of independent Gaussian random variables. The power of this test and the test for the location logistic family against some alternatives are demonstrated by numerical simulations.1 aBalogh, Ferenc1 aKrauczi, Éva uhttp://urania.sissa.it/xmlui/handle/1963/3502501024nas a2200121 4500008004100000245008800041210006900129260001000198520062200208100001900830700001700849856003600866 2013 en d00aEquilibrium measures for a class of potentials with discrete rotational symmetries0 aEquilibrium measures for a class of potentials with discrete rot bSISSA3 aIn this note the logarithmic energy problem with external potential
$|z|^{2n}+tz^d+\bar{t}\bar{z}^d$ is considered in the complex plane, where $n$
and $d$ are positive integers satisfying $d\leq 2n$. Exploiting the discrete
rotational invariance of the potential, a simple symmetry reduction procedure
is used to calculate the equilibrium measure for all admissible values of $n,d$
and $t$.
It is shown that, for fixed $n$ and $d$, there is a critical value
$|t|=t_{cr}$ such that the support of the equilibrium measure is simply
connected for $|t|t_{cr}$.1 aBalogh, Ferenc1 aMerzi, Dario uhttp://hdl.handle.net/1963/723000456nas a2200133 4500008004100000022001400041245006800055210006800123300001400191490000800205100001900213700001900232856007100251 2009 eng d a0021-904500aRegularity of a vector potential problem and its spectral curve0 aRegularity of a vector potential problem and its spectral curve a353–3700 v1611 aBalogh, Ferenc1 aBertola, Marco uhttp://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2008.10.010