We study the periodic boundary value problem associated with the second order nonlinear differential equationu″+cu′+(a+(t)−μa−(t))g(u)=0, where g(u) has superlinear growth at zero and at infinity, a(t) is a periodic sign-changing weight, c∈R and μ>0 is a real parameter. Our model includes (for c=0) the so-called nonlinear Hill's equation. We prove the existence of 2m−1 positive solutions when a(t) has m positive humps separated by m negative ones (in a periodicity interval) and μ is sufficiently large, thus giving a complete solution to a problem raised by G.J. Butler in 1976. The proof is based on Mawhin's coincidence degree defined in open (possibly unbounded) sets and applies also to Neumann boundary conditions. Our method also provides a topological approach to detect subharmonic solutions.

10aCoincidence degree10aMultiplicity results10aNeumann boundary value problems10aPositive periodic solutions10asubharmonic solutions10aSuperlinear indefinite problems1 aFeltrin, Guglielmo1 aZanolin, Fabio uhttp://www.sciencedirect.com/science/article/pii/S002203961730021901126nas a2200193 4500008004100000022001400041245013400055210006900189300001600258490000800274520044900282653002100731653001800752653003200770653001700802100002300819700001900842856007100861 2012 eng d a0022-039600aPositive periodic solutions of second order nonlinear equations with indefinite weight: Multiplicity results and complex dynamics0 aPositive periodic solutions of second order nonlinear equations a2922 - 29500 v2523 aWe prove the existence of a pair of positive T-periodic solutions as well as the existence of positive subharmonic solutions of any order and the presence of chaotic-like dynamics for the scalar second order ODEu″+aλ,μ(t)g(u)=0, where g(x) is a positive function on R+, superlinear at zero and sublinear at infinity, and aλ,μ(t) is a T-periodic and sign indefinite weight of the form λa+(t)−μa−(t), with λ,μ>0 and large.

10aComplex dynamics10aPoincaré map10aPositive periodic solutions10aSubharmonics1 aBoscaggin, Alberto1 aZanolin, Fabio uhttp://www.sciencedirect.com/science/article/pii/S0022039611003883