00820nas a2200121 4500008004300000245004900043210004800092520045600140100001700596700002100613700002800634856003600662 2007 en_Ud 00aBV instability for the Lax-Friedrichs scheme0 aBV instability for the LaxFriedrichs scheme3 aIt is proved that discrete shock profiles (DSPs) for the Lax-Friedrichs scheme for a system of conservation laws do not necessarily depend continuously in BV on their speed. We construct examples of $2 \\\\times 2$-systems for which there are sequences of DSPs with speeds converging to a rational number. Due to a resonance phenomenon, the difference between the limiting DSP and any DSP in the sequence will contain an order-one amount of variation.1 aBaiti, Paolo1 aBressan, Alberto1 aJenssen, Helge Kristian uhttp://hdl.handle.net/1963/233500648nas a2200109 4500008004300000245006600043210005800109520029500167100002100462700001900483856003600502 2005 en_Ud 00aOn the Blow-up for a Discrete Boltzmann Equation in the Plane0 aBlowup for a Discrete Boltzmann Equation in the Plane3 aWe study the possibility of finite-time blow-up for a two dimensional Broadwell model. In a set of rescaled variables, we prove that no self-similar blow-up solution exists, and derive some a priori bounds on the blow-up rate. In the final section, a possible blow-up scenario is discussed.1 aBressan, Alberto1 aFonte, Massimo uhttp://hdl.handle.net/1963/224400716nas a2200121 4500008004300000245006000043210005300103260000900156520034400165100002100509700002800530856003600558 2002 en_Ud 00aOn the Boundary Control of Systems of Conservation Laws0 aBoundary Control of Systems of Conservation Laws bSIAM3 aThe paper is concerned with the boundary controllability of entropy weak solutions to hyperbolic systems of conservation laws. We prove a general result on the asymptotic stabilization of a system near a constant state. On the other hand, we give an example showing that exact controllability in finite time cannot be achieved, in general.1 aBressan, Alberto1 aCoclite, Giuseppe Maria uhttp://hdl.handle.net/1963/307001967nas a2200121 4500008004100000245006700041210006700108260001800175520158100193100002101774700001401795856003601809 2000 en d00aBV estimates for multicomponent chromatography with relaxation0 aBV estimates for multicomponent chromatography with relaxation bSISSA Library3 aWe consider the Cauchy problem for a system of $2n$ balance laws which arises from the modelling of multi-component chromatography: $$\\\\left\\\\{ \\\\eqalign{u_t+u_x&=-{1\\\\over\\\\ve}\\\\big( F(u)-v\\\\big),\\\\cr v_t&={1\\\\over\\\\ve}\\\\big( F(u)-v\\\\big),\\\\cr}\\\\right. \\\\eqno(1)$$ This model describes a liquid flowing with unit speed over a solid bed. Several chemical substances are partly dissolved in the liquid, partly deposited on the solid bed. Their concentrations are represented respectively by the vectors $u=(u_1,\\\\ldots,u_n)$ and $v=(v_1,\\\\ldots,v_n)$. We show that, if the initial data have small total variation, then the solution of (1) remains with small variation for all times $t\\\\geq 0$. Moreover, using the $\\\\L^1$ distance, this solution depends Lipschitz continuously on the initial data, with a Lipschitz constant uniform w.r.t.~$\\\\ve$. Finally we prove that as $\\\\ve\\\\to 0$, the solutions of (1) converge to a limit described by the system $$\\\\big(u+F(u)\\\\big)_t+u_x=0,\\\\qquad\\\\qquad v=F(u).\\\\eqno(2)$$ The proof of the uniform BV estimates relies on the application of probabilistic techniques. It is shown that the components of the gradients $v_x,u_x$ can be interpreted as densities of random particles travelling with speed 0 or 1. The amount of coupling between different components is estimated in terms of the expected number of crossing of these random particles. This provides a first example where BV estimates are proved for general solutions to a class of $2n\\\\times 2n$ systems with relaxation.1 aBressan, Alberto1 aShen, Wen uhttp://hdl.handle.net/1963/133600394nas a2200109 4500008004300000245005900043210005900102260004300161100002300204700002100227856003600248 2000 en_Ud 00aBV solutions for a class of viscous hyperbolic systems0 aBV solutions for a class of viscous hyperbolic systems bIndiana University Mathematics Journal1 aBianchini, Stefano1 aBressan, Alberto uhttp://hdl.handle.net/1963/3194