00855nas a2200133 4500008004300000245005000043210005000093520045800143100002400601700002200625700002000647700001800667856003600685 2007 en_Ud 00aDirac operators on all Podles quantum spheres0 aDirac operators on all Podles quantum spheres3 aWe construct spectral triples on all Podles quantum spheres. These noncommutative geometries are equivariant for a left action of $U_q(su(2))$ and are regular, even and of metric dimension 2. They are all isospectral to the undeformed round geometry of the 2-sphere. There is also an equivariant real structure for which both the commutant property and the first order condition for the Dirac operators are valid up to infinitesimals of arbitrary order.1 aD'Andrea, Francesco1 aDabrowski, Ludwik1 aLandi, Giovanni1 aWagner, Elmar uhttp://hdl.handle.net/1963/217701006nas a2200157 4500008004100000245003400041210002700075260001300102520058600115100002200701700002000723700002000743700002600763700002300789856003600812 2005 en d00aThe Dirac operator on SU_q(2)0 aDirac operator on SUq2 bSpringer3 aWe construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the
spectrum of the operator D is the same as that of the usual Dirac operator on
the 3-dimensional round sphere. The presence of an equivariant real structure J
demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.1 aDabrowski, Ludwik1 aLandi, Giovanni1 aSitarz, Andrzej1 avan Suijlekom, Walter1 aVarilly, Joseph C. uhttp://hdl.handle.net/1963/4425