The study of dispersive properties of Schrödinger operators with point interactions is a fundamental tool for understanding the behavior of many body quantum systems interacting with very short range potential, whose dynamics can be approximated by non linear Schrödinger equations with singular interactions. In this work we proved that, in the case of one point interaction in $\mathbb{R}^3$, the perturbed Laplacian satisfies the same $L^p$−$L^q$ estimates of the free Laplacian in the smaller regime $q \in [2,3)$. These estimates are implied by a recent result concerning the Lpboundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime $q \geq 3$.

1 aIandoli, Felice1 aScandone, Raffaele1 aMichelangeli, Alessandro1 aDell'Antonio, Gianfausto uhttps://doi.org/10.1007/978-3-319-58904-6_1101107nas a2200121 4500008004300000245007000043210006800113260001000181520068600191100002900877700002900906856005000935 2014 en_Ud 00aDynamics on a graph as the limit of the dynamics on a "fat graph"0 aDynamics on a graph as the limit of the dynamics on a fat graph bSISSA3 aWe discuss how the vertex boundary conditions for the dynamics of a quantum particle constrained on a graph emerge in the limit of the dynamics of a particle in a tubular region around the graph (\fat graph") when the transversal section of this region shrinks to zero. We give evidence of the fact that if the limit dynamics exists and is induced by the Laplacian on the graph with certain self-adjoint boundary conditions, such conditions are determined by the possible presence of a zero energy resonance on the fat graph. Pictorially, one may say that in the shrinking limit the resonance acts as a bridge connecting the boundary values at the vertex along the different rays.1 aDell'Antonio, Gianfausto1 aMichelangeli, Alessandro uhttp://urania.sissa.it/xmlui/handle/1963/748500818nas a2200109 4500008004300000245007400043210006900117520043500186100002200621700002900643856003600672 2005 en_Ud 00aDecay of a bound state under a time-periodic perturbation: a toy case0 aDecay of a bound state under a timeperiodic perturbation a toy c3 aWe study the time evolution of a three dimensional quantum particle, initially in a bound state, under the action of a time-periodic zero range interaction with ``strength\\\'\\\' (\\\\alpha(t)). Under very weak generic conditions on the Fourier coefficients of (\\\\alpha(t)), we prove complete ionization as (t \\\\to \\\\infty). We prove also that, under the same conditions, all the states of the system are scattering states.1 aCorreggi, Michele1 aDell'Antonio, Gianfausto uhttp://hdl.handle.net/1963/229800418nas a2200121 4500008004100000245006600041210006600107260001800173100002900191700002000220700002100240856003500261 1998 en d00aDiffusion of a particle in presence of N moving point sources0 aDiffusion of a particle in presence of N moving point sources bSISSA Library1 aDell'Antonio, Gianfausto1 aFigari, Rodolfo1 aTeta, Alessandro uhttp://hdl.handle.net/1963/134