02234nas a2200109 4500008004100000245004000041210004000081520191700121100001602038700002002054856005002074 2013 en d00aFramed sheaves on projective stacks0 aFramed sheaves on projective stacks3 aGiven a normal projective irreducible stack $\mathscr X$ over an algebraically closed field of characteristic zero we consider {\em framed sheaves} on $\mathscr X$, i.e., pairs $(\mathcal E,\phi_{\mathcal E})$, where $\mathcal E$ is a coherent sheaf on $\mathscr X$ and $\phi_{\mathcal E}$ is a morphism from $\mathcal E$ to a fixed coherent sheaf $\mathcal F$.
After introducing a suitable notion of (semi)stability, we construct a projective scheme, which is a moduli space for semistable framed sheaves with fixed Hilbert polynomial, and an open subset of it, which is a fine moduli space for stable framed sheaves. If $\mathscr X$ is a projective irreducible orbifold of dimension two and $\mathcal F$ a locally free sheaf on a smooth divisor $\mathscr D\subset \mathscr X$ satisfying certain conditions, we consider {\em $(\mathscr{D}, \mathcal{F})$-framed sheaves}, i.e., framed sheaves $(\mathcal E,\phi_{\mathcal E})$ with $\mathcal E$ a torsion-free sheaf which is locally free in a neighborhood of $\mathscr D$, and ${\phi_{\mathcal{E}}}_{\vert \mathscr{D}}$ an isomorphism. These pairs are $\mu$-stable for a suitable choice of a parameter entering the (semi)stability condition, and of the polarization of $\mathscr X$. This implies the existence of a fine moduli space parameterizing isomorphism classes of $(\mathscr{D}, \mathcal{F})$-framed sheaves on $\mathscr{X}$ with fixed Hilbert polynomial, which is a quasi-projective scheme. In an appendix we develop the example of stacky Hirzebruch surfaces.
This is the first paper of a project aimed to provide an algebro-geometric approach to the study of gauge theories on a wide class of 4-dimensional Riemannian manifolds by means of framed sheaves on ``stacky" compactifications of them. In particular, in a subsequent paper \cite{art:bruzzopedrinisalaszabo2013} these results are used to study gauge theories on ALE spaces of type $A_k$.1 aBruzzo, Ugo1 aSala, Francesco uhttp://urania.sissa.it/xmlui/handle/1963/743800426nas a2200121 4500008004100000245008500041210006900126260001800195100001600213700002200229700001700251856003600268 2001 en d00aA Fourier transform for sheaves on real tori. I. The equivalence Sky(T)~ Loc (T)0 aFourier transform for sheaves on real tori I The equivalence Sky bSISSA Library1 aBruzzo, Ugo1 aMarelli, Giovanni1 aPioli, Fabio uhttp://hdl.handle.net/1963/1526