01036nas a2200133 4500008004300000245007100043210006900114520059000183100002100773700002200794700002500816700002500841856003600866 2008 en_Ud 00aGlobally stable quasistatic evolution in plasticity with softening0 aGlobally stable quasistatic evolution in plasticity with softeni3 aWe study a relaxed formulation of the quasistatic evolution problem in the context of small strain associative elastoplasticity with softening. The relaxation takes place in spaces of generalized Young measures. The notion of solution is characterized by the following properties: global stability at each time and energy balance on each\\ntime interval. An example developed in detail compares the solutions obtained by this method with the ones provided by a vanishing viscosity approximation, and shows that only the latter capture a decreasing branch in the stress-strain response.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/196501286nas a2200109 4500008004300000245007200043210006900115260003700184520089400221100002501115856003601140 2002 en_Ud 00aGlobal calibrations for the non-homogeneous Mumford-Shah functional0 aGlobal calibrations for the nonhomogeneous MumfordShah functiona bScuola Normale Superiore di Pisa3 aUsing a calibration method we prove that, if $\\\\Gamma\\\\subset \\\\Omega$ is a closed regular hypersurface and if the function $g$ is discontinuous along $\\\\Gamma$ and regular outside, then the function $u_{\\\\beta}$ which solves $$ \\\\begin{cases} \\\\Delta u_{\\\\beta}=\\\\beta(u_{\\\\beta}-g)& \\\\text{in $\\\\Omega\\\\setminus\\\\Gamma$} \\\\partial_{\\\\nu} u_{\\\\beta}=0 & \\\\text{on $\\\\partial\\\\Omega\\\\cup\\\\Gamma$} \\\\end{cases} $$ is in turn discontinuous along $\\\\Gamma$ and it is the unique absolute minimizer of the non-homogeneous Mumford-Shah functional $$ \\\\int_{\\\\Omega\\\\setminus S_u}|\\\\nabla u|^2 dx +{\\\\cal H}^{n-1}(S_u)+\\\\beta\\\\int_{\\\\Omega\\\\setminus S_u}(u-g)^2 dx, $$ over $SBV(\\\\Omega)$, for $\\\\beta$ large enough. Applications of the result to the study of the gradient flow by the method of minimizing movements are shown.1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/3089