01194nas a2200133 4500008004100000245005500041210004700096260001000143520080800153100002500961700002100986700001701007856003601024 2012 en d00aOn the Hausdorff volume in sub-Riemannian geometry0 aHausdorff volume in subRiemannian geometry bSISSA3 aFor a regular sub-Riemannian manifold we study the Radon-Nikodym derivative\r\nof the spherical Hausdorff measure with respect to a smooth volume. We prove\r\nthat this is the volume of the unit ball in the nilpotent approximation and it\r\nis always a continuous function. We then prove that up to dimension 4 it is\r\nsmooth, while starting from dimension 5, in corank 1 case, it is C^3 (and C^4\r\non every smooth curve) but in general not C^5. These results answer to a\r\nquestion addressed by Montgomery about the relation between two intrinsic\r\nvolumes that can be defined in a sub-Riemannian manifold, namely the Popp and\r\nthe Hausdorff volume. If the nilpotent approximation depends on the point (that\r\nmay happen starting from dimension 5), then they are not proportional, in\r\ngeneral.1 aAgrachev, Andrei, A.1 aBarilari, Davide1 aBoscain, Ugo uhttp://hdl.handle.net/1963/6454