Growing plant shoots exhibit spontaneous oscillations that Darwin observed, and termed "circumnutations". Recently, they have received renewed attention for the design and optimal actuation of bioinspired robotic devices. We discuss a possible interpretation of these spontaneous oscillations as a Hopf-type bifurcation in a growing morphoelastic rod. Using a three-dimensional model and numerical simulations, we analyse the salient features of this flutter-like phenomenon (e.g. the characteristic period of the oscillations) and their dependence on the model details (in particular, the impact of choosing different growth models) finding that, overall, these features are robust with respect to changes in the details of the growth model adopted.

1 aAgostinelli, Daniele1 aNoselli, Giovanni1 aDeSimone, Antonio uhttps://doi.org/10.1098/rsta.2020.011601749nas a2200157 4500008004100000022001400041245010700055210006900162260003400231490000700265520118500272100002501457700002201482700002201504856006501526 2021 eng d a1664-462X00aNutations in plant shoots: Endogenous and exogenous factors in the presence of mechanical deformations0 aNutations in plant shoots Endogenous and exogenous factors in th bCold Spring Harbor Laboratory0 v123 aWe present a three-dimensional morphoelastic rod model capable to describe the morphogenesis of growing plant shoots driven by differential growth. We discuss the evolution laws for endogenous oscillators, straightening mechanisms, and reorientations to directional cues, such as gravitropic reactions governed by the avalanche dynamics of statoliths. We use this model to investigate the role of elastic deflections due to gravity loading in circumnutating plant shoots. We show that, in the absence of endogenous cues, pendular and circular oscillations arise as a critical length is attained, thus suggesting the occurrence of an instability triggered by exogenous factors. When also oscillations due to endogenous cues are present, their weight relative to those associated with the instability varies in time as the shoot length and other biomechanical properties change. Thanks to the simultaneous occurrence of these two oscillatory mechanisms, we are able to reproduce a variety of complex behaviors, including trochoid-like patterns, which evolve into circular orbits as the shoot length increases, and the amplitude of the exogenous oscillations becomes dominant.

1 aAgostinelli, Daniele1 aDeSimone, Antonio1 aNoselli, Giovanni uhttps://www.frontiersin.org/article/10.3389/fpls.2021.60800500495nas a2200157 4500008004100000245007500041210006900116260001500185300001300200490000800213100002000221700002200241700001600263700001500279856004300294 2019 eng d00aA neutrally stable shell in a Stokes flow: a rotational Taylor's sheet0 aneutrally stable shell in a Stokes flow a rotational Taylors she c2019/07/26 a201901780 v4751 aCorsi, Giovanni1 aDeSimone, Antonio1 aMaurini, C.1 aVidoli, S. uhttps://doi.org/10.1098/rspa.2019.017802026nas a2200205 4500008004100000022001400041245009500055210006900150300001100219520136500230653002001595653002401615653001701639653002101656100002501677700002701702700002201729700002201751856004701773 2019 eng d a0022-509600aNutations in growing plant shoots: The role of elastic deformations due to gravity loading0 aNutations in growing plant shoots The role of elastic deformatio a1037023 aThe effect of elastic deformations induced by gravity loading on the active circumnutation movements of growing plant shoots is investigated. We consider first a discrete model (a gravitropic spring-pendulum system) and then a continuous rod model which is analyzed both analytically (under the assumption of small deformations) and numerically (in the large deformation regime). We find that, for a choice of material parameters consistent with values reported in the available literature on plant shoots, rods of sufficient length may exhibit lateral oscillations of increasing amplitude, which eventually converge to limit cycles. This behavior strongly suggests the occurrence of a Hopf bifurcation, just as for the gravitropic spring-pendulum system, for which this result is rigorously established. At least in this restricted set of material parameters, our analysis supports a view of Darwin’s circumnutations as a biological analogue to structural systems exhibiting flutter instabilities, i.e., spontaneous oscillations away from equilibrium configurations driven by non-conservative loads. Here, in the context of nutation movements of growing plant shoots, the energy needed to sustain oscillations is continuously supplied to the system by the internal biochemical machinery presiding the capability of plants to maintain a vertical pose.

10aCircumnutations10aFlutter instability10aGravitropism10aHopf bifurcation1 aAgostinelli, Daniele1 aLucantonio, Alessandro1 aNoselli, Giovanni1 aDeSimone, Antonio uhttps://doi.org/10.1016/j.jmps.2019.10370200506nas a2200145 4500008004100000245009700041210006900138300001400207490000800221100001700229700001500246700002200261700002200283856005500305 2017 eng d00aA natural framework for isogeometric fluid-structure interaction based on BEM-shell coupling0 anatural framework for isogeometric fluidstructure interaction ba a522–5460 v3161 aHeltai, Luca1 aKiendl, J.1 aDeSimone, Antonio1 aReali, Alessandro uhttp://cdsads.u-strasbg.fr/abs/2017CMAME.316..522H02051nas a2200145 4500008004100000245007600041210006900117260001300186520158600199653002601785100001701811700001901828700002201847856003601869 2014 en d00aNonsingular Isogeometric Boundary Element Method for Stokes Flows in 3D0 aNonsingular Isogeometric Boundary Element Method for Stokes Flow bElsevier3 aIsogeometric analysis (IGA) is emerging as a technology bridging Computer Aided Geometric Design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that de- scribe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of bound- ary integral equations, leading to Boundary Element Isogeometric Analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. [27] to IGA-BEM.10aIsogeometric Analysis1 aHeltai, Luca1 aArroyo, Marino1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/632600977nas a2200145 4500008004300000245007900043210006900122260002100191520050000212653002100712100002300733700002200756700001700778856003600795 2011 en_Ud 00aNumerical Strategies for Stroke Optimization of Axisymmetric Microswimmers0 aNumerical Strategies for Stroke Optimization of Axisymmetric Mic bWorld Scientific3 aWe propose a computational method to solve optimal swimming problems, based on the boundary integral formulation of the hydrodynamic interaction between swimmer and surrounding fluid and direct constrained minimization of the energy consumed by the swimmer. We apply our method to axisymmetric model examples. We consider a classical model swimmer (the three-sphere swimmer of Golestanian et al.) as well as a novel axisymmetric swimmer inspired by the observation of biological micro-organisms.10aOptimal swimming1 aAlouges, François1 aDeSimone, Antonio1 aHeltai, Luca uhttp://hdl.handle.net/1963/365701154nas a2200121 4500008004300000245004500043210004300088520080300131100002200934700002400956700001600980856003600996 2007 en_Ud 00aA new model for contact angle hysteresis0 anew model for contact angle hysteresis3 aWe present a model which explains several experimental observations relating contact angle hysteresis with surface roughness. The model is based on the balance between released energy and dissipation, and it describes the stick-slip behavior of drops on a rough surface using ideas similar to those employed in dry friction, elasto-plasticity and fracture mechanics. The main results of our analysis are formulas giving the interval of stable contact angles as a function of the surface roughness. These formulas show that the difference between advancing and receding angles is much larger for a drop in complete contact with the substrate (Wenzel drop) than for one whose cavities are filled with air (Cassie-Baxter drop). This fact is used as the key tool to interpret the experimental evidence.1 aDeSimone, Antonio1 aGruenewald, Natalie1 aOtto, Felix uhttp://hdl.handle.net/1963/1848