00384nas a2200097 4500008004100000245010100041210006900142100002100211700001700232856003700249 2020 eng d00aA numerical study of the jerky crack growth in elastoplastic materials with localized plasticity0 anumerical study of the jerky crack growth in elastoplastic mater1 aDal Maso, Gianni1 aHeltai, Luca uhttps://arxiv.org/abs/2004.1270500437nas a2200121 4500008004100000245010800041210006900149300001400218490000800232100002100240700001700261856003700278 2018 eng d00aNURBS-SEM: A hybrid spectral element method on NURBS maps for the solution of elliptic PDEs on surfaces0 aNURBSSEM A hybrid spectral element method on NURBS maps for the a440–4620 v3381 aPitton, Giuseppe1 aHeltai, Luca uhttps://arxiv.org/abs/1804.0827100506nas a2200145 4500008004100000245009700041210006900138300001400207490000800221100001700229700001500246700002200261700002200283856005500305 2017 eng d00aA natural framework for isogeometric fluid-structure interaction based on BEM-shell coupling0 anatural framework for isogeometric fluidstructure interaction ba a522–5460 v3161 aHeltai, Luca1 aKiendl, J.1 aDeSimone, Antonio1 aReali, Alessandro uhttp://cdsads.u-strasbg.fr/abs/2017CMAME.316..522H02051nas a2200145 4500008004100000245007600041210006900117260001300186520158600199653002601785100001701811700001901828700002201847856003601869 2014 en d00aNonsingular Isogeometric Boundary Element Method for Stokes Flows in 3D0 aNonsingular Isogeometric Boundary Element Method for Stokes Flow bElsevier3 aIsogeometric analysis (IGA) is emerging as a technology bridging Computer Aided Geometric Design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that de- scribe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of bound- ary integral equations, leading to Boundary Element Isogeometric Analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. [27] to IGA-BEM.10aIsogeometric Analysis1 aHeltai, Luca1 aArroyo, Marino1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/632600977nas a2200145 4500008004300000245007900043210006900122260002100191520050000212653002100712100002300733700002200756700001700778856003600795 2011 en_Ud 00aNumerical Strategies for Stroke Optimization of Axisymmetric Microswimmers0 aNumerical Strategies for Stroke Optimization of Axisymmetric Mic bWorld Scientific3 aWe propose a computational method to solve optimal swimming problems, based on the boundary integral formulation of the hydrodynamic interaction between swimmer and surrounding fluid and direct constrained minimization of the energy consumed by the swimmer. We apply our method to axisymmetric model examples. We consider a classical model swimmer (the three-sphere swimmer of Golestanian et al.) as well as a novel axisymmetric swimmer inspired by the observation of biological micro-organisms.10aOptimal swimming1 aAlouges, François1 aDeSimone, Antonio1 aHeltai, Luca uhttp://hdl.handle.net/1963/3657