The aim of this paper is to study the quasistatic limit of a one-dimensional model of dynamic debonding. We start from a dynamic problem that strongly couples the wave equation in a time-dependent domain with Griffith's criterion for the evolution of the domain. Passing to the limit as inertia tends to zero, we find that the limit evolution satisfies a stability condition; however, the activation rule in Griffith's (quasistatic) criterion does not hold in general, thus the limit evolution is not rate-independent.

1 aLazzaroni, Giuliano1 aNardini, Lorenzo uhttps://doi.org/10.1007/s00332-017-9407-001350nas a2200193 4500008004100000022001400041245007200055210006900127300001600196490000800212520074100220653001800961653000800979653002400987653002301011653002901034100002201063856007101085 2017 eng d a0022-039600aQuasi-periodic solutions for quasi-linear generalized KdV equations0 aQuasiperiodic solutions for quasilinear generalized KdV equation a5052 - 51320 v2623 aWe prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear autonomous Hamiltonian generalized KdV equations. We consider the most general quasi-linear quadratic nonlinearity. The proof is based on an iterative Nash–Moser algorithm. To initialize this scheme, we need to perform a bifurcation analysis taking into account the strongly perturbative effects of the nonlinearity near the origin. In particular, we implement a weak version of the Birkhoff normal form method. The inversion of the linearized operators at each step of the iteration is achieved by pseudo-differential techniques, linear Birkhoff normal form algorithms and a linear KAM reducibility scheme.

10aKAM for PDE's10aKdV10aNash–Moser theory10aQuasi-linear PDE's10aQuasi-periodic solutions1 aGiuliani, Filippo uhttp://www.sciencedirect.com/science/article/pii/S002203961730048700824nas a2200157 4500008004100000022001400041245009600055210006900151260000800220300000600228490000700234520033600241100001900577700002400596856004600620 2017 eng d a1420-900400aQuasistatic crack growth based on viscous approximation: a model with branching and kinking0 aQuasistatic crack growth based on viscous approximation a model cJan a70 v243 aEmploying the technique of vanishing viscosity and time rescaling, we show the existence of quasistatic evolutions of cracks in brittle materials in the setting of antiplane shear. The crack path is not prescribed a priori and is chosen in an admissible class of piecewise regular sets that allows for branching and kinking.

1 aCrismale, Vito1 aLazzaroni, Giuliano uhttps://doi.org/10.1007/s00030-016-0426-600997nas a2200145 4500008004100000022001400041245010200055210006900157260000800226300001400234490000700248520053000255100002000785856004600805 2016 eng d a1678-771400aA quadratic interaction estimate for conservation laws: motivations, techniques and open problems0 aquadratic interaction estimate for conservation laws motivations cJun a589–6040 v473 aIn a series of joint works with S. Bianchini [3, 4, 5], we proved a quadratic interaction estimate for general systems of conservation laws. Aim of this paper is to present the results obtained in the three cited articles [3, 4, 5], discussing how they are related with the general theory of hyperbolic conservation laws. To this purpose, first we explain why this quadratic estimate is interesting, then we give a brief overview of the techniques we used to prove it and finally we present some related open problems.

1 aModena, Stefano uhttps://doi.org/10.1007/s00574-016-0171-900510nas a2200121 4500008004100000245008100041210006900122260004500191300001400236490000700250100002000257856011100277 2016 eng d00aQuadratic interaction estimate for hyperbolic conservation laws, an overview0 aQuadratic interaction estimate for hyperbolic conservation laws bPeoples' Friendship University of Russia a148–1720 v591 aModena, Stefano uhttps://www.math.sissa.it/publication/quadratic-interaction-estimate-hyperbolic-conservation-laws-overview00972nas a2200121 4500008004100000245009000041210006900131260001000200520038100210653011700591100001800708856012400726 2016 en d00aQualitative properties and construction of solutions to some semilinear elliptic PDEs0 aQualitative properties and construction of solutions to some sem bSISSA3 aThis thesis is devoted to the study of elliptic equations. On the one hand, we study some qualitative properties, such as symmetry of solutions, on the other hand we explicitly construct some solutions vanishing near some fixed manifold. The main techniques are the moving planes method, in order to investigate the qualitative properties and the Lyapunov-Schmidt reduction.10amoving planes method, maximum principle, Lyapunov-Schmidt reduction, Willmore surfaces, Otha-Kawasaki functional1 aRizzi, Matteo uhttps://www.math.sissa.it/publication/qualitative-properties-and-construction-solutions-some-semilinear-elliptic-pdes-001110nas a2200097 4500008004100000245006200041210006000103520078000163100001800943856005100961 2016 en d00aQuasi-static hydraulic crack growth driven by Darcy's law0 aQuasistatic hydraulic crack growth driven by Darcys law3 aIn the framework of rate independent processes, we present a variational model of quasi-static crack growth in hydraulic fracture. We first introduce the energy functional and study the equilibrium conditions of an unbounded linearly elastic body subject to a remote strain ε ∈ R and with a sufficiently regular crack Γ filled by a volume V of incompressible fluid. In particular, we are able to find the pressure p of the fluid inside the crack as a function of Γ, V , and ε. Then, we study the problem of quasi-static evolution for our model, imposing that the fluid volume V and the fluid pressure p are related by Darcy’s law. We show the existence of such an evolution, and we prove that it satisfies a weak notion of the so-called Griffith’s criterion.

1 aAlmi, Stefano uhttp://urania.sissa.it/xmlui/handle/1963/3519801121nas a2200133 4500008004100000245007800041210006900119300001600188490000800204520062100212100002300833700002000856856011100876 2015 eng d00aQuadratic Interaction Functional for General Systems of Conservation Laws0 aQuadratic Interaction Functional for General Systems of Conserva a1075–11520 v3383 aFor the Glimm scheme approximation to the solution of the system of conservation laws in one space dimension with initial data u 0 with small total variation, we prove a quadratic (w.r.t. Tot. Var. ( u 0)) interaction estimate, which has been used in the literature for stability and convergence results. No assumptions on the structure of the flux f are made (apart from smoothness), and this estimate is the natural extension of the Glimm type interaction estimate for genuinely nonlinear systems. More precisely, we obtain the following results: a new analysis of the interaction estimates of simple waves;

1 aBianchini, Stefano1 aModena, Stefano uhttps://www.math.sissa.it/publication/quadratic-interaction-functional-general-systems-conservation-laws-000713nas a2200145 4500008004100000245005900041210005400100260003200154300001200186490000700198520028400205100002300489700002000512856003500532 2014 en d00aOn a quadratic functional for scalar conservation laws0 aquadratic functional for scalar conservation laws bWorld Scientific Publishing a355-4350 v113 aWe prove a quadratic interaction estimate for approximate solutions to scalar conservation laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme.

1 aBianchini, Stefano1 aModena, Stefano uhttp://arxiv.org/abs/1311.292900441nas a2200121 4500008004100000245008400041210006900125300001200194490000600206100002300212700002000235856006400255 2014 eng d00aQuadratic interaction functional for systems of conservation laws: a case study0 aQuadratic interaction functional for systems of conservation law a487-5460 v91 aBianchini, Stefano1 aModena, Stefano uhttps://w3.math.sinica.edu.tw/bulletin_ns/20143/2014308.pdf00844nas a2200109 4500008004100000245005200041210005200093260002900145520049000174100001900664856005100683 2014 en d00aQuantum dimension and quantum projective spaces0 aQuantum dimension and quantum projective spaces bInstitute of Mathematics3 aWe show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K2por its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.1 aMatassa, Marco uhttp://urania.sissa.it/xmlui/handle/1963/3476401462nas a2200145 4500008004100000245005600041210005600097260005100153520096300204100002501167700002401192700002701216700002201243856005101265 2014 en d00aQuantum gauge symmetries in noncommutative geometry0 aQuantum gauge symmetries in noncommutative geometry bEuropean Mathematical Society Publishing House3 aWe discuss generalizations of the notion of i) the group of unitary elements of a (real or complex) finite-dimensional C*-algebra, ii) gauge transformations and iii) (real) automorphisms in the framework of compact quantum group theory and spectral triples. The quantum analogue of these groups are defined as universal (initial) objects in some natural categories. After proving the existence of the universal objects, we discuss several examples that are of interest to physics, as they appear in the noncommutative geometry approach to particle physics: in particular, the C*-algebras M n(R), Mn(C) and Mn(H), describing the finite noncommutative space of the Einstein-Yang-Mills systems, and the algebras A F = C H M3 (C) and Aev = H H M4(C), that appear in Chamseddine-Connes derivation of the Standard Model of particle physics coupled to gravity. As a byproduct, we identify a "free" version of the symplectic group Sp.n/ (quaternionic unitary group).1 aBhowmick, Jyotishman1 aD'Andrea, Francesco1 aDas, Biswarup, Krishna1 aDabrowski, Ludwik uhttp://urania.sissa.it/xmlui/handle/1963/3489700712nas a2200157 4500008004100000245005200041210005100093260001300144300001200157490000800169520027400177100001800451700002100469700001900490856004500509 2014 en d00aQuasi-static crack growth in hydraulic fracture0 aQuasistatic crack growth in hydraulic fracture bElsevier a301-3180 v1093 aWe present a variational model for the quasi-static crack growth in hydraulic fracture in the framework of the energy formulation of rate-independent processes. The cracks are assumed to lie on a prescribed plane and to satisfy a very weak regularity assumption.

1 aAlmi, Stefano1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/20.500.11767/1735000819nas a2200157 4500008004100000022001400041245007800055210006900133260000800202300001400210490000700224520034300231100002100574700002000595856004600615 2014 eng d a1572-922200aQuasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes0 aQuasistatic Evolution in Perfect Plasticity as Limit of Dynamic cDec a915–9540 v263 aWe introduce a model of dynamic visco-elasto-plastic evolution in the linearly elastic regime and prove an existence and uniqueness result. Then we study the limit of (a rescaled version of) the solutions when the data vary slowly. We prove that they converge, up to a subsequence, to a quasistatic evolution in perfect plasticity.

1 aDal Maso, Gianni1 aScala, Riccardo uhttps://doi.org/10.1007/s10884-014-9409-701155nas a2200121 4500008004100000245010200041210006900143300001400212490000700226520073600233100001800969856004600987 2014 eng d00aQuasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity0 aQuasistatic evolution models for thin plates arising as low ener a2085-21530 v243 aIn this paper we deduce by $\Gamma$-convergence some partially and fully linearized quasistatic evolution models for thin plates, in the framework of finite plasticity. Denoting by $\epsilon$ the thickness of the plate, we study the case where the scaling factor of the elasto-plastic energy is of order $\epsilon^{2 \alpha -2}$, with $\alpha\geq 3$. These scalings of the energy lead, in the absence of plastic dissipation, to the Von Kármán and linearized Von Kármán functionals for thin plates. We show that solutions to the three-dimensional quasistatic evolution problems converge, as the thickness of the plate tends to zero, to a quasistatic evolution associated to a suitable reduced model depending on $\alpha$.

1 aDavoli, Elisa uhttps://doi.org/10.1142/S021820251450016X00550nas a2200109 4500008004100000245002500041210002500066260001000091520025100101100002500352856006300377 2013 en d00aQuadratic cohomology0 aQuadratic cohomology bSISSA3 aWe study homological invariants of smooth families of real quadratic forms as\r\na step towards a \"Lagrange multipliers rule in the large\" that intends to\r\ndescribe topology of smooth vector functions in terms of scalar Lagrange\r\nfunctions.1 aAgrachev, Andrei, A. uhttps://www.math.sissa.it/publication/quadratic-cohomology01345nas a2200145 4500008004100000022001300041245009800054210006900152300001200221490000700233520079700240100002401037700002001061856011801081 2013 eng d a1435985500aQuasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential0 aQuasiperiodic solutions with Sobolev regularity of NLS on Td wit a229-2860 v153 aWe prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplicative potential on Td , d ≥ 1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are C∞ then the solutions are C∞. The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized operators ("Green functions") along scales of Sobolev spaces. The key off-diagonal decay estimates of the Green functions are proved via a new multiscale inductive analysis. The main novelty concerns the measure and "complexity" estimates. © European Mathematical Society 2013.1 aBerti, Massimiliano1 aBolle, Philippe uhttps://www.math.sissa.it/publication/quasi-periodic-solutions-sobolev-regularity-nls-td-multiplicative-potential01461nas a2200217 4500008004100000022001400041245008900055210006900144300001400213490000700227520075100234653001700985653002301002653003101025653002601056653003101082653001601113100001801129700002501147856007101172 2013 eng d a0294-144900aA quasistatic evolution model for perfectly plastic plates derived by Γ-convergence0 aquasistatic evolution model for perfectly plastic plates derived a615 - 6600 v303 aThe subject of this paper is the rigorous derivation of a quasistatic evolution model for a linearly elastic–perfectly plastic thin plate. As the thickness of the plate tends to zero, we prove via Γ-convergence techniques that solutions to the three-dimensional quasistatic evolution problem of Prandtl–Reuss elastoplasticity converge to a quasistatic evolution of a suitable reduced model. In this limiting model the admissible displacements are of Kirchhoff–Love type and the stretching and bending components of the stress are coupled through a plastic flow rule. Some equivalent formulations of the limiting problem in rate form are derived, together with some two-dimensional characterizations for suitable choices of the data.

10a-convergence10aPerfect plasticity10aPrandtl–Reuss plasticity10aQuasistatic evolution10aRate-independent processes10aThin plates1 aDavoli, Elisa1 aMora, Maria Giovanna uhttp://www.sciencedirect.com/science/article/pii/S029414491200103501387nas a2200133 4500008004300000245008800043210006900131260001300200520093500213100002101148700002201169700002601191856003601217 2012 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution0 aQuasistatic evolution for CamClay plasticity properties of the v bSpringer3 aCam-Clay plasticity is a well established model for the description of the mechanics of fine grained soils. As solutions can develop discontinuities in time, a weak notion of solution, in terms of a rescaled time s , has been proposed in [8] to give a meaning to this discontinuous evolution. In this paper we first prove that this rescaled evolution satisfies the flow-rule for the rate of plastic strain, in a suitable measure-theoretical sense. In the second part of the paper we consider the behavior of the evolution in terms of the original time variable t . We prove that the unrescaled solution satisfies an energy-dissipation balance and an evolution law for the internal variable, which can be expressed in terms of integrals depending only on the original time. Both these integral identities contain terms concentrated on the jump times, whose size can only be determined by looking at the rescaled formulation.

1 aDal Maso, Gianni1 aDeSimone, Antonio1 aSolombrino, Francesco uhttp://hdl.handle.net/1963/390000946nas a2200145 4500008004100000245007300041210006900114260000900183520047100192653002200663100002900685700002500714700002500739856003600764 2012 en d00aQuasistatic evolution in non-associative plasticity - the cap models0 aQuasistatic evolution in nonassociative plasticity the cap model bSIAM3 aNon-associative elasto-plasticity is the working model of plasticity for soil and rocks mechanics. Yet, it is usually viewed as non-variational. In this work, we prove a contrario the existence of a variational evolution for such a model under a natural capping assumption on the hydrostatic stresses and a less natural mollification of the stress admissibility constraint. The obtained elasto-plastic evolution is expressed for times that are conveniently rescaled.10aElasto-plasticity1 aBabadjian, Jean-Francois1 aFrancfort, Gilles A.1 aMora, Maria Giovanna uhttp://hdl.handle.net/1963/413900609nas a2200121 4500008004100000245003000041210002900071260001000100520030300110100001600413700002200429856003600451 2011 en d00aQ-factorial Laurent rings0 aQfactorial Laurent rings bSISSA3 aDolgachev proved that, for any field k, the ring naturally associated to a\\r\\ngeneric Laurent polynomial in d variables, $d \\\\geq 4$, is factorial. We prove a\\r\\nsufficient condition for the ring associated to a very general complex Laurent\\r\\npolynomial in d=3 variables to be Q-factorial.1 aBruzzo, Ugo1 aGrassi, Antonella uhttp://hdl.handle.net/1963/418302121nas a2200145 4500008004100000245007900041210006900120260001300189520164700202100002001849700002201869700002301891700002501914856003601939 2011 en d00aQuantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators0 aQuantum Geometry on Quantum Spacetime Distance Area and Volume O bSpringer3 aWe develop the first steps towards an analysis of geometry on the quantum\\r\\nspacetime proposed in Doplicher et al. (Commun Math Phys 172:187–220, 1995). The homogeneous elements of the universal differential algebra are naturally identified with operators living in tensor powers of Quantum Spacetime; this allows us to compute their spectra. In particular, we consider operators that can be interpreted as distances, areas, 3- and 4-volumes. The Minkowski distance operator between two independent events is shown to have pure Lebesgue spectrum with infinite multiplicity. The Euclidean distance operator is shown to have spectrum bounded below by a constant of the order of the Planck length. The corresponding statement is proved also for both the space-space and space-time area operators, as well as for the Euclidean length of the vector representing the 3-volume operators. However, the space 3-volume operator (the time component of that vector) is shown to have spectrum equal to the whole complex plane. All these operators are normal, while the distance operators are also selfadjoint. The Lorentz invariant spacetime volume operator, representing the 4- volume spanned by five\\r\\nindependent events, is shown to be normal. Its spectrum is pure point with a\\r\\nfinite distance (of the order of the fourth power of the Planck length) away\\r\\nfrom the origin. The mathematical formalism apt to these problems is developed and its relation to a general formulation of Gauge Theories on Quantum Spaces is outlined. As a byproduct, a Hodge Duality between the absolute differential and the Hochschild boundary is pointed out.1 aBahns, Dorothea1 aDoplicher, Sergio1 aFredenhagen, Klaus1 aPiacitelli, Gherardo uhttp://hdl.handle.net/1963/520301134nas a2200133 4500008004100000245006000041210005900101260001000160520072600170100002000896700002400916700002400940856003600964 2011 en d00aQuantum Hitchin Systems via beta-deformed Matrix Models0 aQuantum Hitchin Systems via betadeformed Matrix Models bSISSA3 aWe study the quantization of Hitchin systems in terms of beta-deformations of generalized matrix models related to conformal blocks of Liouville theory on punctured Riemann surfaces. We show that in a suitable limit, corresponding to the Nekrasov-Shatashvili one, the loop equations of the matrix model reproduce the Hamiltonians of the quantum Hitchin system on the sphere and the torus with marked points. The eigenvalues of these Hamiltonians are shown to be the epsilon1-deformation of the chiral observables of the corresponding N=2 four ndimensional gauge theory. Moreover, we find the exact wave-functions in terms of the matrix model representation of the conformal blocks with degenerate field insertions.

1 aBonelli, Giulio1 aMaruyoshi, Kazunobu1 aTanzini, Alessandro uhttp://hdl.handle.net/1963/418100860nas a2200133 4500008004100000245008400041210006900125260001300194520041200207100002500619700002400644700002200668856003600690 2011 en d00aQuantum Isometries of the finite noncommutative geometry of the Standard Model0 aQuantum Isometries of the finite noncommutative geometry of the bSpringer3 aWe compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M x F where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.1 aBhowmick, Jyotishman1 aD'Andrea, Francesco1 aDabrowski, Ludwik uhttp://hdl.handle.net/1963/490600673nas a2200109 4500008004300000245010600043210006900149520026500218100002200483700002200505856003600527 2011 en_Ud 00aQuasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications0 aQuasiconvex envelopes of energies for nematic elastomers in the 3 aWe provide some explicit formulas for the quasiconvex envelope of energy densities for nematic elastomers in the small strain regime and plane strain conditions. We then demonstrate their use as a powerful tool for the interpretation of mechanical experiments.1 aCesana, Pierluigi1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/406500919nas a2200121 4500008004300000245013400043210006900177260004600246520042800292100002200720700001900742856003600761 2011 en_Ud 00aQuasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach0 aQuasistatic crack evolution for a cohesive zone model with diffe bCambridge University Press / EDP Sciences3 aA new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [6] is recovered. In this case, the convergence of the discrete time approximations is improved.1 aCagnetti, Filippo1 aToader, Rodica uhttp://hdl.handle.net/1963/235501263nas a2200277 4500008004100000022001600041245007000057210006900127260008600196300001400282490001000296520028400306653002100590653002200611653002400633653002200657653003200679653002500711653002600736653001800762653002600780653003100806653002400837100002400861856010000885 2011 eng d a{0373-3114}00aQuasistatic crack growth in finite elasticity with Lipschitz data0 aQuasistatic crack growth in finite elasticity with Lipschitz dat a{TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY}b{SPRINGER HEIDELBERG}c{JAN} a{165-194}0 v{190}3 a{We extend the recent existence result of Dal Maso and Lazzaroni (Ann Inst H Poincare Anal Non Lineaire 27:257-290, 2010) for quasistatic evolutions of cracks in finite elasticity, allowing for boundary conditions and external forces with discontinuous first derivatives.}

10aBrittle fracture10aCrack propagation10aEnergy minimization10aFinite elasticity10afree-discontinuity problems10aGriffith's criterion10aNon-interpenetration}10aPolyconvexity10aQuasistatic evolution10aRate-independent processes10a{Variational models1 aLazzaroni, Giuliano uhttps://www.math.sissa.it/publication/quasistatic-crack-growth-finite-elasticity-lipschitz-data01427nas a2200145 4500008004300000245012100043210006900164260001300233520090600246653002401152100002101176700002201197700002601219856003601245 2011 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling0 aQuasistatic evolution for CamClay plasticity a weak formulation bSpringer3 aCam-Clay nonassociative plasticity exhibits both hardening and softening behaviour, depending on the loading. For many initial data the classical formulation of the quasistatic evolution problem has no smooth solution. We propose here a notion of generalized solution, based on a viscoplastic approximation. To study the limit of the viscoplastic evolutions we rescale time, in such a way that the plastic strain is uniformly Lipschitz with respect to the rescaled time. The limit of these rescaled solutions, as the viscosity parameter tends to zero, is characterized through an energy-dissipation balance, that can be written in a natural way using the rescaled time. As shown in [4] and [6], the proposed solution may be discontinuous with respect to the original time. Our formulation allows to compute the amount of viscous dissipation occurring instantaneously at each discontinuity time.

10aCam-Clay plasticity1 aDal Maso, Gianni1 aDeSimone, Antonio1 aSolombrino, Francesco uhttp://hdl.handle.net/1963/367000823nas a2200121 4500008004100000245007200041210006900113260001300182520042600195100002200621700002200643856003600665 2011 en d00aQuasistatic evolution of sessile drops and contact angle hysteresis0 aQuasistatic evolution of sessile drops and contact angle hystere bSpringer3 aWe consider the classical model of capillarity coupled with a rate-independent dissipation mechanism due to frictional forces acting on the contact line, and prove the existence of quasistatic evolutions with prescribed initial configuration. We also discuss in detail some explicit solutions to show that the model does account for contact angle hysteresis, and to compare its predictions with experimental observations.1 aAlberti, Giovanni1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/491201210nas a2200097 4500008004300000245004000043210003900083520092900122100002501051856003601076 2010 en_Ud 00aQuantum Spacetime: a Disambiguation0 aQuantum Spacetime a Disambiguation3 aWe review an approach to non-commutative geometry, where models are constructed by quantisation of the coordinates. In particular we focus on the full DFR model and its irreducible components; the (arbitrary) restriction to a particular irreducible component is often referred to as the \\\"canonical quantum spacetime\\\". The aim is to distinguish and compare the approaches under various points of view, including motivations, prescriptions for quantisation, the choice of mathematical objects and concepts, approaches to dynamics and to covariance. Some incorrect statements as \\\"universality of Planck scale conflicts with Lorentz-Fitzgerald contraction and requires a modification of covariance\\\", or \\\"stability of the geometric background requires an absolute lower bound of (\\\\Delta x^\\\\mu)\\\", or \\\"violations of unitarity are due to time/space non-commutativity\\\" are put in context, and discussed.1 aPiacitelli, Gherardo uhttp://hdl.handle.net/1963/386400550nas a2200109 4500008004300000245008300043210006900126520016900195100002100364700001900385856003600404 2010 en_Ud 00aQuasistatic crack growth in elasto-plastic materials: the two-dimensional case0 aQuasistatic crack growth in elastoplastic materials the twodimen3 aWe study a variational model for the quasistatic evolution of elasto-plastic materials with cracks in the case of planar small strain associative elasto-plasticity.1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/296400595nas a2200109 4500008004300000245007600043210006900119520021600188100002100404700002400425856003600449 2010 en_Ud 00aQuasistatic crack growth in finite elasticity with non-interpenetration0 aQuasistatic crack growth in finite elasticity with noninterpenet3 aWe present a variational model to study the quasistatic growth of brittle cracks in hyperelastic materials, in the framework of finite elasticity, taking\\ninto account the non-interpenetration condition.

1 aDal Maso, Gianni1 aLazzaroni, Giuliano uhttp://hdl.handle.net/1963/339701311nas a2200121 4500008004300000245008200043210006900125520088800194653002401082100002101106700002601127856003601153 2010 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case0 aQuasistatic evolution for CamClay plasticity the spatially homog3 aWe study the spatially uniform case of the problem of quasistatic evolution in small strain nonassociative elastoplasticity (Cam-Clay model). Through the introdution of a viscous approximation, the problem reduces to determine the limit behavior of the solutions of a singularly perturbed system of ODE\\\'s in a finite dimensional Banach space. Depending on the sign of two explicit scalar indicators, we see that the limit dynamics presents, under quite generic assumptions, the alternation of three possible regimes: the elastic regime, when the limit equation is just the equation of linearized elasticity, the slow dynamics, when the strain evolves smoothly on the yield surface and plastic flow is produced, and the fast dynamics, which may happen only in the softening regime, where\\nviscous solutions exhibit a jump across a heteroclinic orbit of an auxiliary system.

10aCam-Clay plasticity1 aDal Maso, Gianni1 aSolombrino, Francesco uhttp://hdl.handle.net/1963/367101168nas a2200157 4500008004100000022001400041245008800055210006900143300000900212490000700221520061900228653003000847653003100877100002600908856007600934 2010 eng d a1078-094700aQuasistatic evolution for plasticity with softening: The spatially homogeneous case0 aQuasistatic evolution for plasticity with softening The spatiall a11890 v273 aThe spatially uniform case of the problem of quasistatic evolution in small strain associative elastoplasticity with softening is studied. Through the introdution of a viscous approximation, the problem reduces to determine the limit behaviour of the solutions of a singularly perturbed system of ODE's in a finite dimensional Banach space. We see that the limit dynamics presents, for a generic choice of the initial data, the alternation of three possible regimes (elastic regime, slow dynamics, fast dynamics), which is determined by the sign of two scalar indicators, whose explicit expression is given.

10aplasticity with softening10arate independent processes1 aSolombrino, Francesco uhttp://aimsciences.org//article/id/4c2301d8-f553-493e-b672-b4f76a3ede2f00735nas a2200109 4500008004300000245009500043210006900138520033900207100002100546700002200567856003600589 2009 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions0 aQuasistatic evolution for CamClay plasticity examples of spatial3 aWe study a quasistatic evolution problem for Cam-Clay plasticity under a special loading program which leads to spatially homogeneous solutions. Under some initial conditions, the solutions exhibit a softening behaviour and time discontinuities.\\nThe behavior of the solutions at the jump times is studied by a viscous approximation.1 aDal Maso, Gianni1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/339501324nas a2200121 4500008004100000245008000041210006900121300001300190490000700203520085200210100002601062856011401088 2009 eng d00aQuasistatic evolution problems for nonhomogeneous elastic plastic materials0 aQuasistatic evolution problems for nonhomogeneous elastic plasti a89–1190 v163 aThe paper studies the quasistatic evolution for elastoplastic materials when the yield surface depends on the position in the reference configuration. The main results are obtained when the yield surface is continuous with respect to the space variable. The case of piecewise constant dependence is also considered. The evolution is studied in the framework of the variational formulation for rate independent problems developed by Mielke. The results are proved by adapting the arguments introduced for a constant yield surface, using some properties of convex valued semicontinuous multifunctions. A strong formulation of the problem is also obtained, which includes a pointwise version of the plastic flow rule. Some examples are considered, which show that strain concentration may occur as a consequence of a nonconstant yield surface.

1 aSolombrino, Francesco uhttps://www.math.sissa.it/publication/quasistatic-evolution-problems-nonhomogeneous-elastic-plastic-materials00626nas a2200109 4500008004300000245008200043210006900125520024600194100002100440700001900461856003600480 2007 en_Ud 00aQuasistatic crack growth for a cohesive zone model with prescribed crack path0 aQuasistatic crack growth for a cohesive zone model with prescrib3 aIn this paper we study the quasistatic crack growth for a cohesive zone model. We assume that the crack path is prescribed and we study the time evolution of the crack in the framework of the variational theory of rate-independent processes.1 aDal Maso, Gianni1 aZanini, Chiara uhttp://hdl.handle.net/1963/168600558nas a2200121 4500008004300000245007600043210006900119520014800188100002100336700002100357700002200378856003600400 2007 en_Ud 00aQuasistatic evolution problems for pressure-sensitive plastic materials0 aQuasistatic evolution problems for pressuresensitive plastic mat3 aWe study quasistatic evolution problems for pressure-sensitive plastic materials in the context of small strain associative perfect plasticity.1 aDal Maso, Gianni1 aDemyanov, Alexey1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/196200273nas a2200097 4500008004300000245002800043210002600071100002200097700002000119856003600139 2006 en_Ud 00aQ-curvature flow on S^40 aQcurvature flow on S41 aMalchiodi, Andrea1 aStruwe, Michael uhttp://hdl.handle.net/1963/219300738nas a2200109 4500008004300000245003400043210003400077520044300111100002100554700001700575856003600592 2006 en_Ud 00aQuantisation of bending flows0 aQuantisation of bending flows3 aWe briefly review the Kapovich-Millson notion of Bending flows as an integrable system on the space of polygons in ${\\\\bf R}^3$, its connection with a specific Gaudin XXX system, as well as the generalisation to $su(r), r>2$. Then we consider the quantisation problem of the set of Hamiltonians pertaining to the problem, quite naturally called Bending Hamiltonians, and prove that their commutativity is preserved at the quantum level.1 aFalqui, Gregorio1 aMusso, Fabio uhttp://hdl.handle.net/1963/253700676nas a2200109 4500008004300000245007400043210006900117520029900186100002400485700002100509856003600530 2006 en_Ud 00aQuasi-periodic solutions of completely resonant forced wave equations0 aQuasiperiodic solutions of completely resonant forced wave equat3 aWe prove existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced nonlinear wave equations with periodic spatial boundary conditions. We consider both the cases the forcing frequency is: (Case A) a rational number and (Case B) an irrational number.1 aBerti, Massimiliano1 aProcesi, Michela uhttp://hdl.handle.net/1963/223401091nas a2200121 4500008004300000245008400043210006900127520066900196100002100865700002200886700002500908856003600933 2006 en_Ud 00aQuasistatic evolution problems for linearly elastic-perfectly plastic materials0 aQuasistatic evolution problems for linearly elasticperfectly pla3 aThe problem of quasistatic evolution in small strain associative elastoplasticity is studied in the framework of the variational theory for rate-independent processes. Existence of solutions is proved through the use of incremental variational problems in spaces of functions with bounded deformation. This provides a new approximation result for the solutions of the quasistatic evolution problem, which are shown to be absolutely continuous in time. Four equivalent formulations of the problem in rate form are derived. A strong formulation of the flow rule is obtained by introducing a precise definition of the stress on the singular set of the plastic strain.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna uhttp://hdl.handle.net/1963/212900410nas a2200109 4500008004100000245007400041210006900115260003500184100002400219700002100243856003600264 2005 en d00aQuasi-periodic oscillations for wave equations under periodic forcing0 aQuasiperiodic oscillations for wave equations under periodic for bAccademia Nazionale dei Lincei1 aBerti, Massimiliano1 aProcesi, Michela uhttp://hdl.handle.net/1963/458300706nas a2200121 4500008004300000245005300043210005300096520033400149100002100483700002500504700001900529856003600548 2005 en_Ud 00aQuasistatic Crack Growth in Nonlinear Elasticity0 aQuasistatic Crack Growth in Nonlinear Elasticity3 aIn this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [15]. We consider the case of $n$-dimensional finite elasticity, for an arbitrary $n\\\\ge1$, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.1 aDal Maso, Gianni1 aFrancfort, Gilles A.1 aToader, Rodica uhttp://hdl.handle.net/1963/229300759nas a2200121 4500008004300000245007800043210006900121520034600190100002100536700002500557700001900582856003600601 2004 en_Ud 00aQuasi-static evolution in brittle fracture: the case of bounded solutions0 aQuasistatic evolution in brittle fracture the case of bounded so3 aThe main steps of the proof of the existence result for the quasi-static evolution of cracks in brittle materials, obtained in [7] in the vector case and for a general quasiconvex elastic energy, are presented here under the simplifying assumption that the minimizing sequences involved in the problem are uniformly bounded in $L^\\\\infty$.1 aDal Maso, Gianni1 aFrancfort, Gilles A.1 aToader, Rodica uhttp://hdl.handle.net/1963/222900751nas a2200121 4500008004100000245004200041210004200083260001900125520040900144100002200553700001800575856003600593 2003 en d00aQuantum spin coverings and statistics0 aQuantum spin coverings and statistics bIOP Publishing3 aSL_q(2) at odd roots of unity q^l =1 is studied as a quantum cover of the complex rotation group SO(3,C), in terms of the associated Hopf algebras of (quantum) polynomial functions. We work out the irreducible corepresentations, the decomposition of their tensor products and a coquasitriangular structure, with the associated braiding (or statistics). As an example, the case l=3 is discussed in detail.1 aDabrowski, Ludwik1 aReina, Cesare uhttp://hdl.handle.net/1963/166700411nas a2200109 4500008004100000245009300041210006900134260001800203100002200221700002200243856003600265 2002 en d00aQuantum mechanics and stochastic mechanics for compatible observables at different times0 aQuantum mechanics and stochastic mechanics for compatible observ bSISSA Library1 aCorreggi, Michele1 aMorchio, Giovanni uhttp://hdl.handle.net/1963/157700415nas a2200133 4500008004100000020001800041245005500059210005500114260001300169100002000182700002300202700002000225856003600245 2000 en d a0-08-043658-700aQuantized control systems and discrete nonholonomy0 aQuantized control systems and discrete nonholonomy bElsevier1 aMarigo, Alessia1 aPiccoli, Benedetto1 aBicchi, Antonio uhttp://hdl.handle.net/1963/150200343nas a2200109 4500008004100000245004900041210004900090260001800139100001800157700002200175856003600197 1995 en d00aQuantum homogeneous spaces at roots of unity0 aQuantum homogeneous spaces at roots of unity bSISSA Library1 aReina, Cesare1 aZampa, Alessandro uhttp://hdl.handle.net/1963/102200341nas a2200097 4500008004100000245006400041210006400105260001800169100002100187856003500208 1990 en d00aQuadratic forms for singular perturbations of the Laplacian0 aQuadratic forms for singular perturbations of the Laplacian bSISSA Library1 aTeta, Alessandro uhttp://hdl.handle.net/1963/757