We consider the Navier-Stokes equations in a channel with a narrowing and walls of varying curvature. By applying the empirical interpolation method to generate an affine parameter dependency, the offline-online procedure can be used to compute reduced order solutions for parameter variations. The reduced order space is computed from the steady-state snapshot solutions by a standard POD procedure. The model is discretised with high-order spectral element ansatz functions, resulting in 4752 degrees of freedom. The proposed reduced order model produces accurate approximations of steady-state solutions for a wide range of geometries and kinematic viscosity values. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the valve shape. Through our computational study, we found that the critical Reynolds number for the symmetry breaking increases as the wall curvature increases.

1 aHess, Martin, W.1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://arxiv.org/abs/1901.0370801653nas a2200145 4500008004100000245011300041210007100154300001200225490000700237520104600244100002101290700002101311700002101332856015401353 2020 eng d00aReduced basis model order reduction for Navier–Stokes equations in domains with walls of varying curvature0 aReduced basis model order reduction for Navier–Stokes equations a119-1260 v343 aWe consider the Navier–Stokes equations in a channel with a narrowing and walls of varying curvature. By applying the empirical interpolation method to generate an affine parameter dependency, the offline-online procedure can be used to compute reduced order solutions for parameter variations. The reduced-order space is computed from the steady-state snapshot solutions by a standard POD procedure. The model is discretised with high-order spectral element ansatz functions, resulting in 4752 degrees of freedom. The proposed reduced-order model produces accurate approximations of steady-state solutions for a wide range of geometries and kinematic viscosity values. The application that motivated the present study is the onset of asymmetries (i.e. symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the valve shape. Through our computational study, we found that the critical Reynolds number for the symmetry breaking increases as the wall curvature increases.

1 aHess, Martin, W.1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085233294&doi=10.1080%2f10618562.2019.1645328&partnerID=40&md5=e2ed8f24c66376cdc8b5485aa400efb0