Let $u_t+f(u)_x=0$ be a strictly hyperbolic, genuinely nonlinear system of conservation laws of Temple class. In this paper, a continuous semigroup of solutions is constructed on a domain of $L^\infty$ functions, with possibly unbounded variation. Trajectories depend Lipschitz continuously on the initial data, in the $L^1$ distance. Moreover, we show that a weak solution of the Cauchy problem coincides with the corresponding semigroup trajectory if and only if it satisfies an entropy condition of Oleinik type, concerning the decay of positive waves.

1 aBressan, Alberto1 aGoatin, Paola uhttp://hdl.handle.net/1963/325600739nas a2200121 4500008004300000245010400043210006900147260002300216520029600239100002100535700002500556856003600581 1999 en_Ud 00aStructural stability and regularity of entropy solutions to hyperbolic systems of conservation laws0 aStructural stability and regularity of entropy solutions to hype bIndiana University3 aThe paper is concerned with the qualitative structure of entropy solutions to a strictly hyperbolic, genuinely nonlinear system of conservation laws. We first give an accurate description of the local and global wave-front structure of a BV solution, generated by a front tracking algorithm.1 aBressan, Alberto1 aLeFloch, Philippe G. uhttp://hdl.handle.net/1963/337400841nas a2200121 4500008004100000245006900041210006500110260001800175520045200193100001700645700002100662856003600683 1997 en d00aThe semigroup generated by a temple class system with large data0 asemigroup generated by a temple class system with large data bSISSA Library3 aWe consider the Cauchy problem $$u_t + [F(u)]_x=0, u(0,x)=\\\\bar u(x) (*)$$ for a nonlinear $n\\\\times n$ system of conservation laws with coinciding shock and rarefaction curves. Assuming the existence of a coordinates system made of Riemann invariants, we prove the existence of a weak solution of (*) that depends in a lipschitz continuous way on the initial data, in the class of functions with arbitrarily large but bounded total variation.1 aBaiti, Paolo1 aBressan, Alberto uhttp://hdl.handle.net/1963/102300768nas a2200121 4500008004100000245007200041210006900113260001800182520036800200100002100568700002100589856003600610 1997 en d00aShift-differentiability of the flow generated by a conservation law0 aShiftdifferentiability of the flow generated by a conservation l bSISSA Library3 aThe paper introduces a notion of \\\"shift-differentials\\\" for maps with values in the space BV. These differentials describe first order variations of a given functin $u$, obtained by horizontal shifts of the points of its graph. The flow generated by a scalar conservation law is proved to be generically shift-differentiable, according to the new definition.1 aBressan, Alberto1 aGuerra, Graziano uhttp://hdl.handle.net/1963/103300363nas a2200109 4500008004100000245005800041210005700099260001800156100002100174700002300195856003500218 1997 en d00aStructural stability for time-optimal planar sytheses0 aStructural stability for timeoptimal planar sytheses bSISSA Library1 aBressan, Alberto1 aPiccoli, Benedetto uhttp://hdl.handle.net/1963/99700349nas a2200097 4500008004100000245005900041210005500100260003900155100002100194856003600215 1996 en d00aThe semigroup approach to systems of conservation laws0 asemigroup approach to systems of conservation laws bSociedade Brasileira de Matematica1 aBressan, Alberto uhttp://hdl.handle.net/1963/1037