01403nas a2200133 4500008004300000245004000043210003900083260002400122520102800146100002101174700001901195700001901214856003601233 2003 en_Ud 00aSpace-adiabatic perturbation theory0 aSpaceadiabatic perturbation theory bInternational Press3 aWe study approximate solutions to the Schr\\\\\\\"odinger equation $i\\\\epsi\\\\partial\\\\psi_t(x)/\\\\partial t = H(x,-i\\\\epsi\\\\nabla_x) \\\\psi_t(x)$ with the Hamiltonian given as the Weyl quantization of the symbol $H(q,p)$ taking values in the space of bounded operators on the Hilbert space $\\\\Hi_{\\\\rm f}$ of fast ``internal\\\'\\\' degrees of freedom. By assumption $H(q,p)$ has an isolated energy band. Using a method of Nenciu and Sordoni \\\\cite{NS} we prove that interband transitions are suppressed to any order in $\\\\epsi$. As a consequence, associated to that energy band there exists a subspace of $L^2(\\\\mathbb{R}^d,\\\\Hi _{\\\\rm f})$ almost invariant under the unitary time evolution. We develop a systematic perturbation scheme for the computation of effective Hamiltonians which govern approximately the intraband time evolution. As examples for the general perturbation scheme we discuss the Dirac and Born-Oppenheimer type Hamiltonians and we reconsider also the time-adiabatic theory.1 aPanati, Gianluca1 aSpohn, Herbert1 aTeufel, Stefan uhttp://hdl.handle.net/1963/304101131nas a2200133 4500008004100000245006000041210005900101260003000160520071200190100002100902700001900923700001900942856003600961 2002 en d00aSpace-adiabatic perturbation theory in quantum dynamics0 aSpaceadiabatic perturbation theory in quantum dynamics bAmerican Physical Society3 aA systematic perturbation scheme is developed for approximate solutions to the time-dependent SchrÃ¶dinger equation with a space-adiabatic Hamiltonian. For a particular isolated energy band, the basic approach is to separate kinematics from dynamics. The kinematics is defined through a subspace of the full Hilbert space for which transitions to other band subspaces are suppressed to all orders, and the dynamics operates in that subspace in terms of an effective intraband Hamiltonian. As novel applications, we discuss the Born-Oppenheimer theory to second order and derive for the first time the nonperturbative definition of the g factor of the electron within nonrelativistic quantum electrodynamics.1 aPanati, Gianluca1 aSpohn, Herbert1 aTeufel, Stefan uhttp://hdl.handle.net/1963/5985