00881nas a2200133 4500008004300000245008900043210007100132260001300203520043200216100001800648700002500666700002000691856003600711 2011 en_Ud 00aThe time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity0 atimedependent von Kármán plate equation as a limit of 3d nonline bSpringer3 aThe asymptotic behaviour of the solutions of three-dimensional nonlinear elastodynamics in a thin plate is studied, as the thickness $h$ of the plate tends to zero. Under appropriate scalings of the applied force and of the initial values in terms of $h$, it is shown that three-dimensional solutions of the nonlinear elastodynamic equation converge to solutions of the time-dependent von K\\\\\\\'arm\\\\\\\'an plate equation.1 aAbels, Helmut1 aMora, Maria Giovanna1 aMüller, Stefan uhttp://hdl.handle.net/1963/383500987nas a2200133 4500008004300000245005700043210005600100520056800156100002100724700002200745700002500767700002500792856003600817 2007 en_Ud 00aTime-dependent systems of generalized Young measures0 aTimedependent systems of generalized Young measures3 aIn this paper some new tools for the study of evolution problems in the framework of Young measures are introduced. A suitable notion of time-dependent system of generalized Young measures is defined, which allows to extend the classical notions of total variation and absolute continuity with respect to time, as well as the notion of time derivative. The main results are a Helly type theorem for sequences of systems of generalized Young measures and a theorem about the existence of the time derivative for systems with bounded variation with respect to time.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/1795