00841nas a2200121 4500008004300000245007100043210006900114260004800183520041200231100002100643700001900664856003600683 2000 en_Ud 00aA Uniqueness Condition for Hyperbolic Systems of Conservation Laws0 aUniqueness Condition for Hyperbolic Systems of Conservation Laws bAmerican Institute of Mathematical Sciences3 aConsider the Cauchy problem for a hyperbolic $n\\\\times n$ system of conservation laws in one space dimension: $$u_t+f(u)_x=0, u(0,x)=\\\\bar u(x).\\\\eqno(CP)$$ Relying on the existence of a continuous semigroup of solutions, we prove that the entropy admissible solution of (CP) is unique within the class of functions $u=u(t,x)$ which have bounded variation along a suitable family of space-like curves.1 aBressan, Alberto1 aLewicka, Marta uhttp://hdl.handle.net/1963/3195