We give a complete classification of left-invariant sub-Riemannian structures on three dimensional Lie groups in terms of the basic differential invariants. As a corollary we explicitly find a sub-Riemannian isometry between the nonisomorphic Lie groups $SL(2)$ and $A^+(\mathbb{R})\times S^1$, where $A^+(\mathbb{R})$ denotes the group of orientation preserving affine maps on the real line.

PB - SISSA UR - http://hdl.handle.net/1963/6453 U1 - 6397 U2 - Mathematics U4 - 1 U5 - MAT/03 GEOMETRIA ER -