TY - JOUR
T1 - Some Properties of Non-linear sigma-Models in Noncommutative Geometry
JF - Int. J. Mod. Phys. B 14 (2000) 2367-2382
Y1 - 2000
A1 - Ludwik Dabrowski
A1 - Thomas Krajewski
A1 - Giovanni Landi
AB - We introduce non-linear $\\\\sigma$-models in the framework of noncommutative geometry with special emphasis on models defined on the noncommutative torus. We choose as target spaces the two point space and the circle and illustrate some characteristic features of the corresponding $\\\\sigma$-models. In particular we construct a $\\\\sigma$-model instanton with topological charge equal to 1. We also define and investigate some properties of a noncommutative analogue of the Wess-Zumino-Witten model.
PB - SISSA Library
UR - http://hdl.handle.net/1963/1373
U1 - 3082
U2 - Mathematics
U3 - Mathematical Physics
ER -