TY - JOUR
T1 - Classical W-algebras and generalized Drinfeld-Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras
JF - Communications in Mathematical Physics 323, nr. 2 (2013) 663-711
Y1 - 2013
A1 - Alberto De Sole
A1 - Victor G. Kac
A1 - Daniele Valeri
AB - We provide a description of the Drinfeld-Sokolov Hamiltonian reduction for the construction of classical W-algebras within the framework of Poisson vertex algebras. In this context, the gauge group action on the phase space is translated in terms of (the exponential of) a Lie conformal algebra action on the space of functions. Following the ideas of Drinfeld and Sokolov, we then establish under certain sufficient conditions the applicability of the Lenard-Magri scheme of integrability and the existence of the corresponding integrable hierarchy of bi-Hamiltonian equations.
PB - Springer
UR - http://hdl.handle.net/1963/6978
N1 - 43 pages. Second version with minor editing and corrections
U1 - 6966
U2 - Mathematics
U4 - 1
U5 - MAT/07 FISICA MATEMATICA
ER -