We study the multiplicity of positive solutions for a two-point boundary value problem associated to the nonlinear second order equation u''+f(x,u)=0. We allow x ↦ f(x,s) to change its sign in order to cover the case of scalar equations with indefinite weight. Roughly speaking, our main assumptions require that f(x,s)/s is below λ_1 as s→0^+ and above λ_1 as s→+∞. In particular, we can deal with the situation in which f(x,s) has a superlinear growth at zero and at infinity. We propose a new approach based on the topological degree which provides the multiplicity of solutions. Applications are given for u'' + a(x) g(u) = 0, where we prove the existence of 2^n-1 positive solutions when a(x) has n positive humps and a^-(x) is sufficiently large.

PB - Elsevier UR - http://urania.sissa.it/xmlui/handle/1963/35147 N1 - Work presented at the "Special Session 21" of the "10th AIMS Conference on Dynamical Systems, Differential Equations and Applications" (Madrid, July 7-11, 2014). U1 - 35387 U2 - Mathematics U4 - 1 U5 - MAT/05 ER -