TY - JOUR T1 - A hybrid reduced order method for modelling turbulent heat transfer problems JF - Computers & Fluids Y1 - 2020 A1 - Sokratia Georgaka A1 - Giovanni Stabile A1 - Kelbij Star A1 - Gianluigi Rozza A1 - Michael J. Bluck AB -

A parametric, hybrid reduced order model approach based on the Proper Orthogonal Decomposition with both Galerkin projection and interpolation based on Radial Basis Functions method is presented. This method is tested against a case of turbulent non-isothermal mixing in a T-junction pipe, a common ow arrangement found in nuclear reactor cooling systems. The reduced order model is derived from the 3D unsteady, incompressible Navier-Stokes equations weakly coupled with the energy equation. For high Reynolds numbers, the eddy viscosity and eddy diffusivity are incorporated into the reduced order model with a Proper Orthogonal Decomposition (nested and standard) with Interpolation (PODI), where the interpolation is performed using Radial Basis Functions. The reduced order solver, obtained using a k-ω SST URANS full order model, is tested against the full order solver in a 3D T-junction pipe with parametric velocity inlet boundary conditions.

VL - 208 UR - https://arxiv.org/abs/1906.08725 ER -