TY - CHAP T1 - A Spectral Element Reduced Basis Method in Parametric CFD T2 - Numerical Mathematics and Advanced Applications - ENUMATH 2017 Y1 - 2019 A1 - Martin W. Hess A1 - Gianluigi Rozza ED - Radu, Florin Adrian ED - Kumar, Kundan ED - Berre, Inga ED - Nordbotten, Jan Martin ED - Pop, Iuliu Sorin AB -

We consider the Navier-Stokes equations in a channel with varying Reynolds numbers. The model is discretized with high-order spectral element ansatz functions, resulting in 14 259 degrees of freedom. The steady-state snapshot solu- tions define a reduced order space, which allows to accurately evaluate the steady- state solutions for varying Reynolds number with a reduced order model within a fixed-point iteration. In particular, we compare different aspects of implementing the reduced order model with respect to the use of a spectral element discretization. It is shown, how a multilevel static condensation in the pressure and velocity boundary degrees of freedom can be combined with a reduced order modelling approach to enhance computational times in parametric many-query scenarios.

JF - Numerical Mathematics and Advanced Applications - ENUMATH 2017 PB - Springer International Publishing VL - 126 UR - https://arxiv.org/abs/1712.06432 ER -