TY - JOUR T1 - A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations JF - Computer Methods in Applied Mechanics and Engineering Y1 - 2020 A1 - Efthymios N Karatzas A1 - Giovanni Stabile A1 - Leo Nouveau A1 - Guglielmo Scovazzi A1 - Gianluigi Rozza AB -

We investigate a projection-based reduced order model of the steady incompressible Navier–Stokes equations for moderate Reynolds numbers. In particular, we construct an “embedded” reduced basis space, by applying proper orthogonal decomposition to the Shifted Boundary Method, a high-fidelity embedded method recently developed. We focus on the geometrical parametrization through level-set geometries, using a fixed Cartesian background geometry and the associated mesh. This approach avoids both remeshing and the development of a reference domain formulation, as typically done in fitted mesh finite element formulations. Two-dimensional computational examples for one and three parameter dimensions are presented to validate the convergence and the efficacy of the proposed approach.

VL - 370 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087886522&doi=10.1016%2fj.cma.2020.113273&partnerID=40&md5=d864e4808190b682ecb1c8b27cda72d8 ER -