TY - JOUR
T1 - Entire solutions of autonomous equations on Rn with nontrivial asymptotics
JF - Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008) 65-72
Y1 - 2008
A1 - Andrea Malchiodi
AB - We prove existence of a new type of solutions for the semilinear equation $- \\\\D u + u = u^p$ on $\\\\R^n$, with $1 < p < \\\\frac{n+2}{n-2}$. These solutions are positive, bounded, decay exponentially to zero away from three half-lines with a common origin, and at infinity are asymptotically periodic.
UR - http://hdl.handle.net/1963/2640
U1 - 1483
U2 - Mathematics
U3 - Functional Analysis and Applications
ER -