TY - CONF T1 - Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives T2 - Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational Methods in Applied Sciences and Engineering, Y1 - 2016 A1 - Filippo Salmoiraghi A1 - F. Ballarin A1 - Giovanni Corsi A1 - Andrea Mola A1 - Marco Tezzele A1 - Gianluigi Rozza ED - Papadrakakis, M. ED - Papadopoulos, V. ED - Stefanou, G. ED - Plevris, V. AB -

Several problems in applied sciences and engineering require reduction techniques in order to allow computational tools to be employed in the daily practice, especially in iterative procedures such as optimization or sensitivity analysis. Reduced order methods need to face increasingly complex problems in computational mechanics, especially into a multiphysics setting. Several issues should be faced: stability of the approximation, efficient treatment of nonlinearities, uniqueness or possible bifurcations of the state solutions, proper coupling between fields, as well as offline-online computing, computational savings and certification of errors as measure of accuracy. Moreover, efficient geometrical parametrization techniques should be devised to efficiently face shape optimization problems, as well as shape reconstruction and shape assimilation problems. A related aspect deals with the management of parametrized interfaces in multiphysics problems, such as fluid-structure interaction problems, and also a domain decomposition based approach for complex parametrized networks. We present some illustrative industrial and biomedical problems as examples of recent advances on methodological developments.

JF - Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational Methods in Applied Sciences and Engineering, PB - ECCOMAS CY - Crete, Greece U1 - 35466 U2 - Mathematics U4 - 1 U5 - MAT/08 ER -