TY - JOUR T1 - Ground state energy of mixture of Bose gases JF - Reviews in Mathematical Physics Y1 - 2019 A1 - Alessandro Michelangeli A1 - Phan Thanh Nam A1 - Alessandro Olgiati AB -

We consider the asymptotic behavior of a system of multi-component trapped bosons, when the total particle number N becomes large. In the dilute regime, when the interaction potentials have the length scale of order O(N−1), we show that the leading order of the ground state energy is captured correctly by the Gross–Pitaevskii energy functional and that the many-body ground state fully condensates on the Gross–Pitaevskii minimizers. In the mean-field regime, when the interaction length scale is O(1), we are able to verify Bogoliubov’s approximation and obtain the second order expansion of the ground state energy. While such asymptotic results have several precursors in the literature on one-component condensates, the adaptation to the multi-component setting is non-trivial in various respects and the analysis will be presented in detail.

VL - 31 UR - https://doi.org/10.1142/S0129055X19500053 ER - TY - JOUR T1 - Gross-Pitaevskii non-linear dynamics for pseudo-spinor condensates JF - Journal of Nonlinear Mathematical Physics Y1 - 2017 A1 - Alessandro Michelangeli A1 - Alessandro Olgiati AB -

We derive the equations for the non-linear effective dynamics of a so called pseudo-spinor Bose-Einstein condensate, which emerges from the linear many-body Schrödinger equation at the leading order in the number of particles. The considered system is a three-dimensional diluted gas of identical bosons with spin, possibly confined in space, and coupled with an external time-dependent magnetic field; particles also interact among themselves through a short-scale repulsive interaction. The limit of infinitely many particles is monitored in the physically relevant Gross-Pitaevskii scaling. In our main theorem, if at time zero the system is in a phase of complete condensation (at the level of the reduced one-body marginal) and with energy per particle fixed by the Gross-Pitaevskii functional, then such conditions persist also at later times, with the one-body orbital of the condensate evolving according to a system of non-linear cubic Schrödinger equations coupled among themselves through linear (Rabi) terms. The proof relies on an adaptation to the spinor setting of Pickl’s projection counting method developed for the scalar case. Quantitative rates of convergence are available, but not made explicit because evidently non-optimal. In order to substantiate the formalism and the assumptions made in the main theorem, in an introductory section we review the mathematical formalisation of modern typical experiments with pseudo-spinor condensates.

PB - Taylor & Francis VL - 24 UR - https://doi.org/10.1080/14029251.2017.1346348 ER -