TY - JOUR T1 - Nonreciprocal oscillations of polyelectrolyte gel filaments subject to a steady and uniform electric field JF - Journal of the Mechanics and Physics of Solids Y1 - 2023 A1 - Giancarlo Cicconofri A1 - Valentina Damioli A1 - Giovanni Noselli AB - Soft actuators typically require time-varying or spatially modulated control to be operationally effective. The scope of the present paper is to show, theoretically and experimentally, that a natural way to overcome this limitation is to exploit mechanical instabilities. We report experiments on active filaments of polyelectrolyte (PE) gels subject to a steady and uniform electric field. A large enough intensity of the field initiates the motion of the active filaments, leading to periodic oscillations. We develop a mathematical model based on morphoelasticity theory for PE gel filaments beating in a viscous fluid, and carry out the stability analysis of the governing equations to show the emergence of flutter and divergence instabilities for suitable values of the system’s parameters. We confirm the results of the stability analysis with numerical simulations for the nonlinear equations of motion to show that such instabilities may lead to periodic self-sustained oscillations, in agreement with experiments. The key mechanism that underlies such behaviour is the capability of the filament to undergo active shape changes depending on its local orientation relative to the external electric field, in striking similarity with gravitropism, the mechanism that drives shape changes in plants via differential growth induced by gravity. Interestingly, the resulting oscillations are nonreciprocal in nature, and hence able to generate thrust and directed flow at low Reynolds number. The exploitation of mechanical instabilities in soft actuators represents a new avenue for the advancement in engineering design in fields such as micro-robotics and micro-fluidics. VL - 173 UR - https://www.sciencedirect.com/science/article/pii/S0022509623000297 ER - TY - JOUR T1 - Nutations in growing plant shoots as a morphoelastic flutter instability JF - Phil. Trans. R. Soc. A Y1 - 2021 A1 - Daniele Agostinelli A1 - Giovanni Noselli A1 - Antonio DeSimone AB -

Growing plant shoots exhibit spontaneous oscillations that Darwin observed, and termed "circumnutations". Recently, they have received renewed attention for the design and optimal actuation of bioinspired robotic devices. We discuss a possible interpretation of these spontaneous oscillations as a Hopf-type bifurcation in a growing morphoelastic rod. Using a three-dimensional model and numerical simulations, we analyse the salient features of this flutter-like phenomenon (e.g. the characteristic period of the oscillations) and their dependence on the model details (in particular, the impact of choosing different growth models) finding that, overall, these features are robust with respect to changes in the details of the growth model adopted.

VL - 379 UR - https://doi.org/10.1098/rsta.2020.0116 ER - TY - JOUR T1 - Nutations in plant shoots: Endogenous and exogenous factors in the presence of mechanical deformations JF - Frontiers in Plant Science Y1 - 2021 A1 - Daniele Agostinelli A1 - Antonio DeSimone A1 - Giovanni Noselli AB -

We present a three-dimensional morphoelastic rod model capable to describe the morphogenesis of growing plant shoots driven by differential growth. We discuss the evolution laws for endogenous oscillators, straightening mechanisms, and reorientations to directional cues, such as gravitropic reactions governed by the avalanche dynamics of statoliths. We use this model to investigate the role of elastic deflections due to gravity loading in circumnutating plant shoots. We show that, in the absence of endogenous cues, pendular and circular oscillations arise as a critical length is attained, thus suggesting the occurrence of an instability triggered by exogenous factors. When also oscillations due to endogenous cues are present, their weight relative to those associated with the instability varies in time as the shoot length and other biomechanical properties change. Thanks to the simultaneous occurrence of these two oscillatory mechanisms, we are able to reproduce a variety of complex behaviors, including trochoid-like patterns, which evolve into circular orbits as the shoot length increases, and the amplitude of the exogenous oscillations becomes dominant.

PB - Cold Spring Harbor Laboratory VL - 12 UR - https://www.frontiersin.org/article/10.3389/fpls.2021.608005 ER - TY - JOUR T1 - Nutations in growing plant shoots: The role of elastic deformations due to gravity loading JF - Journal of the Mechanics and Physics of Solids Y1 - 2019 A1 - Daniele Agostinelli A1 - Alessandro Lucantonio A1 - Giovanni Noselli A1 - Antonio DeSimone KW - Circumnutations KW - Flutter instability KW - Gravitropism KW - Hopf bifurcation AB -

The effect of elastic deformations induced by gravity loading on the active circumnutation movements of growing plant shoots is investigated. We consider first a discrete model (a gravitropic spring-pendulum system) and then a continuous rod model which is analyzed both analytically (under the assumption of small deformations) and numerically (in the large deformation regime). We find that, for a choice of material parameters consistent with values reported in the available literature on plant shoots, rods of sufficient length may exhibit lateral oscillations of increasing amplitude, which eventually converge to limit cycles. This behavior strongly suggests the occurrence of a Hopf bifurcation, just as for the gravitropic spring-pendulum system, for which this result is rigorously established. At least in this restricted set of material parameters, our analysis supports a view of Darwin’s circumnutations as a biological analogue to structural systems exhibiting flutter instabilities, i.e., spontaneous oscillations away from equilibrium configurations driven by non-conservative loads. Here, in the context of nutation movements of growing plant shoots, the energy needed to sustain oscillations is continuously supplied to the system by the internal biochemical machinery presiding the capability of plants to maintain a vertical pose.

UR - https://doi.org/10.1016/j.jmps.2019.103702 ER -