TY - RPRT
T1 - Symplectic instanton bundles on P3 and 't Hooft instantons
Y1 - 2013
A1 - Ugo Bruzzo
A1 - Dimitri Markushevich
A1 - Alexander Tikhomirov
AB - We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus $I^*_{n,r}$ of tame symplectic instantons is irreducible and has the expected dimension, equal to $4n(r+1)-r(2r+1)$. The proof is inherently based on a relation between the spaces $I^*_{n,r}$ and the moduli spaces of 't Hooft instantons.
PB - arXiv:1312.5554 [math.AG]
UR - http://urania.sissa.it/xmlui/handle/1963/34486
N1 - This preprint has been published with the title "Moduli of symplectic instanton vector bundles of higher rank on projective space P-3 " in CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, Volume: 10, issue 4, Augst 2012, pages 1232-1245.
U1 - 34675
U2 - Mathematics
U4 - 1
U5 - MAT/03
ER -
TY - JOUR
T1 - Moduli of symplectic instanton vector bundles of higher rank on projective space $\\mathbbP^3$
JF - Central European Journal of Mathematics 10, nr. 4 (2012) 1232
Y1 - 2012
A1 - Ugo Bruzzo
A1 - Dimitri Markushevich
A1 - Alexander Tikhomirov
AB - Symplectic instanton vector bundles on the projective space $\\mathbb{P}^3$ constitute a natural generalization of mathematical instantons of rank 2. We study the moduli space $I_{n,r}$ of rank-$2r$ symplectic instanton vector bundles on $\\mathbb{P}^3$ with $r\\ge2$ and second Chern class $n\\ge r,\\ n\\equiv r({\\rm mod}2)$. We give an explicit construction of an irreducible component $I^*_{n,r}$ of this space for each such value of $n$ and show that $I^*_{n,r}$ has the expected dimension $4n(r+1)-r(2r+1)$.
PB - SISSA
UR - http://hdl.handle.net/1963/4656
N1 - 14 pages
U1 - 4406
U2 - Mathematics
U3 - Mathematical Physics
U4 - -1
ER -
TY - RPRT
T1 - Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces
Y1 - 2010
A1 - Ugo Bruzzo
A1 - Dimitri Markushevich
A1 - Alexander Tikhomirov
AB - We construct a compactification $M^{\\\\mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $\\\\gamma \\\\colon M^s \\\\to M^{\\\\mu ss}$, where $M^s$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{\\\\mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.
UR - http://hdl.handle.net/1963/4049
U1 - 353
U2 - Mathematics
U3 - Mathematical Physics
ER -