We consider a scalar field equation on compact surfaces which has variational structure. When the surface is a torus and a physical parameter ρ belongs to $(8\pi, 4\pi^2 )$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.

VL - 4 ER - TY - JOUR T1 - Supercritical conformal metrics on surfaces with conical singularities JF - Int Math Res Notices (2011) 2011 (24): 5625-5643 Y1 - 2011 A1 - Mauro Bardelloni A1 - Francesca De Marchis A1 - Andrea Malchiodi AB -We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.

PB - Oxford University Press UR - http://hdl.handle.net/1963/4095 U1 - 309 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Generic multiplicity for a scalar field equation on compact surfaces JF - Journal of Functional Analysis Y1 - 2010 A1 - Francesca De Marchis KW - Generic multiplicity KW - Geometric PDE's KW - Morse inequalities KW - Scalar field equations AB -We prove generic multiplicity of solutions for a scalar field equation on compact surfaces via Morse inequalities. In particular our result improves significantly the multiplicity estimate which can be deduced from the degree-counting formula in Chen and Lin (2003) [12]. Related results are derived for the prescribed Q-curvature equation.

VL - 259 UR - http://www.sciencedirect.com/science/article/pii/S0022123610002697 ER -