TY - JOUR
T1 - deal2lkit: A toolkit library for high performance programming in deal.II
JF - SOFTWAREX
Y1 - 2018
A1 - Alberto Sartori
A1 - Nicola Giuliani
A1 - Mauro Bardelloni
A1 - Luca Heltai
VL - 7
ER -
TY - JOUR
T1 - LinearOperator – a generic, high-level expression syntax for linear algebra
JF - COMPUTERS & MATHEMATICS WITH APPLICATIONS
Y1 - 2016
A1 - Matthias Maier
A1 - Mauro Bardelloni
A1 - Luca Heltai
VL - 72
ER -
TY - JOUR
T1 - Deal2lkit: a Toolkit Library for High Performance Programming in deal.II
Y1 - 2015
A1 - Alberto Sartori
A1 - Nicola Giuliani
A1 - Mauro Bardelloni
A1 - Luca Heltai
AB - We present version 1.0.0 of the deal2lkit (deal.II ToolKit) library. deal2lkit is a collection of modules and classes for the general purpose finite element library deal.II. Its principal aim is to provide a high level interface, controlled via parameter files, for those steps that are common in all finite element programs: mesh generation, selection of the finite element type, application of boundary conditions and many others. Each module can be used as a building block independently on the others, and can be integrated in existing finite element codes based on deal.II, drastically reducing the size of programs, rendering their use automatically parametrised, and reducing the overall time-to-market of finite element programming. Moreover, deal2lkit features interfaces with the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers) and ASSIMP (Open Asset Import Library) libraries. Some examples are provided which show the aim and scopes of deal2lkit. The deal2lkit library is released under the GNU Lesser General Public License (LGPL) and can be retrieved from the deal2lkit repository https://github.com/mathLab/deal2lkit.
PB - SISSA
UR - http://urania.sissa.it/xmlui/handle/1963/35006
U1 - 35235
U2 - Mathematics
U4 - 1
U5 - MAT/08
ER -
TY - THES
T1 - The decomposition of optimal transportation problems with convex cost
Y1 - 2014
A1 - Mauro Bardelloni
KW - Optimal Transportation
PB - SISSA
UR - http://urania.sissa.it/xmlui/handle/1963/7475
U1 - 7570
U2 - Mathematics
U4 - 1
U5 - MAT/05
ER -
TY - RPRT
T1 - The decomposition of optimal transportation problems with convex cost
Y1 - 2014
A1 - Stefano Bianchini
A1 - Mauro Bardelloni
PB - SISSA
UR - http://hdl.handle.net/1963/7433
U1 - 7527
ER -
TY - JOUR
T1 - An improved geometric inequality via vanishing moments, with applications to singular Liouville equations
JF - Communications in Mathematical Physics 322, nr.2 (2013): 415-452
Y1 - 2013
A1 - Mauro Bardelloni
A1 - Andrea Malchiodi
PB - SISSA
UR - http://hdl.handle.net/1963/6561
U1 - 6486
U2 - Mathematics
U4 - 1
U5 - MAT/05 ANALISI MATEMATICA
ER -
TY - JOUR
T1 - Supercritical conformal metrics on surfaces with conical singularities
JF - Int Math Res Notices (2011) 2011 (24): 5625-5643
Y1 - 2011
A1 - Mauro Bardelloni
A1 - Francesca De Marchis
A1 - Andrea Malchiodi
AB - We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.

PB - Oxford University Press
UR - http://hdl.handle.net/1963/4095
U1 - 309
U2 - Mathematics
U3 - Functional Analysis and Applications
ER -