In this paper we consider the following Toda system of equations on a compact surface:−Δu1=2ρ1(h1eu1∫Σh1eu1dVg−1)−ρ2(h2eu2∫Σh2eu2dVg−1)−Δu1=−4π∑j=1mα1,j(δpj−1),−Δu2=2ρ2(h2eu2∫Σh2eu2dVg−1)−ρ1(h1eu1∫Σh1eu1dVg−1)−Δu2=−4π∑j=1mα2,j(δpj−1), which is motivated by the study of models in non-abelian Chern–Simons theory. Here h1,h2 are smooth positive functions, ρ1,ρ2 two positive parameters, pi points of the surface and α1,i,α2,j non-negative numbers. We prove a general existence result using variational methods. The same analysis applies to the following mean field equation−Δu=ρ1(heu∫ΣheudVg−1)−ρ2(he−u∫Σhe−udVg−1), which arises in fluid dynamics."

VL - 285 UR - http://www.sciencedirect.com/science/article/pii/S0001870815003072 ER - TY - JOUR T1 - A variational Analysis of the Toda System on Compact Surfaces JF - Communications on Pure and Applied Mathematics, Volume 66, Issue 3, March 2013, Pages 332-371 Y1 - 2013 A1 - Andrea Malchiodi A1 - David Ruiz AB - In this paper we consider the Toda system of equations on a compact surface. We will give existence results by using variational methods in a non coercive case. A key tool in our analysis is a new Moser-Trudinger type inequality under suitable conditions on the center of mass and the scale of concentration of the two components u_1, u_2. PB - Wiley UR - http://hdl.handle.net/1963/6558 N1 - pre-peer version, to appear in Comm. Pure Applied Math U1 - 6489 U2 - Mathematics U4 - 1 U5 - MAT/05 ANALISI MATEMATICA ER - TY - JOUR T1 - Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential JF - Rev. Mat. Iberoamericana Y1 - 2011 A1 - David Ruiz A1 - Giusi Vaira PB - Real Sociedad Matemática Española VL - 27 UR - https://projecteuclid.org:443/euclid.rmi/1296828834 ER - TY - JOUR T1 - New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces JF - Geometric and Functional Analysis 21 (2011) 1196-1217 Y1 - 2011 A1 - Andrea Malchiodi A1 - David Ruiz AB - We consider a singular Liouville equation on a compact surface, arising from the study of Chern-Simons vortices in a self dual regime. Using new improved versions of the Moser-Trudinger inequalities (whose main feature is to be scaling invariant) and a variational scheme, we prove new existence results. PB - Springer UR - http://hdl.handle.net/1963/4099 U1 - 305 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Multiple bound states for the Schroedinger-Poisson problem JF - Commun. Contemp. Math. 10 (2008) 391-404 Y1 - 2008 A1 - Antonio Ambrosetti A1 - David Ruiz UR - http://hdl.handle.net/1963/2679 U1 - 1421 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn JF - J. Funct. Anal. 254 (2008) 2816-2845 Y1 - 2008 A1 - Antonio Ambrosetti A1 - Giovanna Cerami A1 - David Ruiz AB - Using concentration compactness type arguments, we prove some results about the existence of positive ground and bound state of linearly coupled systems of nonlinear Schrödinger equations. UR - http://hdl.handle.net/1963/2175 U1 - 2069 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations Y1 - 2007 A1 - Antonio Ambrosetti A1 - Eduardo Colorado A1 - David Ruiz JF - Calc. Var. Partial Differential Equations 30 (2007) 85-112 UR - http://hdl.handle.net/1963/1835 U1 - 2381 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity JF - J. Anal. Math. 98 (2006) 317-348 Y1 - 2006 A1 - Antonio Ambrosetti A1 - Andrea Malchiodi A1 - David Ruiz UR - http://hdl.handle.net/1963/1756 U1 - 2788 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials JF - Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 Y1 - 2006 A1 - Antonio Ambrosetti A1 - David Ruiz AB - We prove the existence of radial solutions of 1.2) concentrating at a sphere for potentials which might be zero and might decay to zero at\\r\\ninfinity. The proofs use a perturbation technique in a variational setting, through a Lyapunov-Schmidt reduction. UR - http://hdl.handle.net/1963/1755 U1 - 2789 U2 - Mathematics U3 - Functional Analysis and Applications ER -