The paper describes the qualitative structure of an admissible BV solution to a strictly hyperbolic system of conservation laws whose characteristic families are piecewise genuinely nonlinear. More precisely, we prove that there are a countable set of points Θ and a countable family of Lipschitz curves T{script} such that outside T{script} ∪ Θ the solution is continuous, and for all points in T{script}{set minus}Θ the solution has left and right limit. This extends the corresponding structural result in [7] for genuinely nonlinear systems. An application of this result is the stability of the wave structure of solution w.r.t. -convergence. The proof is based on the introduction of subdiscontinuities of a shock, whose behavior is qualitatively analogous to the discontinuities of the solution to genuinely nonlinear systems.

PB - Taylor & Francis UR - http://urania.sissa.it/xmlui/handle/1963/34694 U1 - 34908 U2 - Mathematics U4 - 1 U5 - MAT/05 ER - TY - JOUR T1 - Structure of entropy solutions to general scalar conservation laws in one space dimension JF - Journal of Mathematical Analysis and Applications Y1 - 2014 A1 - Stefano Bianchini A1 - Lei Yu PB - SISSA VL - 428 UR - https://www.sciencedirect.com/science/article/pii/S0022247X15002218 IS - 1 U1 - 7305 U2 - Mathematics U4 - -1 ER - TY - THES T1 - The structure and regularity of admissible BV solutions to hyperbolic conservation laws in one space dimension Y1 - 2013 A1 - Lei Yu AB - This thesis is devoted to the study of the qualitative properties of admissible BV solutions to the strictly hyperbolic conservation laws in one space dimension by using wave-front tracking approximation. This thesis consists of two parts: • SBV-like regularity of vanishing viscosity BV solutions to strict hyperbolic systems of conservation laws. • Global structure of admissible BV solutions to strict hyperbolic conservation laws. PB - SISSA U1 - 7210 U2 - Mathematics U4 - 1 U5 - MAT/05 ANALISI MATEMATICA ER - TY - JOUR T1 - SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension JF - Rend. Istit. Mat. Univ. Trieste Y1 - 2012 A1 - Stefano Bianchini A1 - Lei Yu VL - 44 ER -