Two-dimensional almost-Riemannian structures are generalized Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector fields that can become collinear. We consider the Carnot–Carathéodory distance canonically associated with an almost-Riemannian structure and study the problem of Lipschitz equivalence between two such distances on the same compact oriented surface. We analyze the generic case, allowing in particular for the presence of tangency points, i.e., points where two generators of the distribution and their Lie bracket are linearly dependent. The main result of the paper provides a characterization of the Lipschitz equivalence class of an almost-Riemannian distance in terms of a labeled graph associated with it.

VL - 23 UR - https://doi.org/10.1007/s12220-011-9262-4 ER - TY - JOUR T1 - Two-dimensional almost-Riemannian structures with tangency points JF - Ann. Inst. H. Poincare Anal. Non Lineaire Y1 - 2010 A1 - Andrei A. Agrachev A1 - Ugo Boscain A1 - Grégoire Charlot A1 - Roberta Ghezzi A1 - Mario Sigalotti AB -Two-dimensional almost-Riemannian structures are generalized Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector fields that can become collinear. We study the relation between the topological invariants of an almost-Riemannian structure on a compact oriented surface and the rank-two vector bundle over the surface which defines the structure. We analyse the generic case including the presence of tangency points, i.e. points where two generators of the distribution and their Lie bracket are linearly dependent. The main result of the paper provides a classification of oriented almost-Riemannian structures on compact oriented surfaces in terms of the Euler number of the vector bundle corresponding to the structure. Moreover, we present a Gauss-Bonnet formula for almost-Riemannian structures with tangency points.

PB - Elsevier VL - 27 UR - http://hdl.handle.net/1963/3870 U1 - 839 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Controllability of the discrete-spectrum Schrodinger equation driven by an external field JF - Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009) 329-349 Y1 - 2009 A1 - Thomas Chambrion A1 - Paolo Mason A1 - Mario Sigalotti A1 - Ugo Boscain AB - We prove approximate controllability of the bilinear Schrodinger equation in the case in which the uncontrolled Hamiltonian has discrete nonresonant\\nspectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the\\nGalerkin approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented: the harmonic oscillator and the 3D well of potential controlled by suitable potentials. UR - http://hdl.handle.net/1963/2547 U1 - 1572 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds JF - Discrete Contin. Dyn. Syst. 20 (2008) 801-822 Y1 - 2008 A1 - Andrei A. Agrachev A1 - Ugo Boscain A1 - Mario Sigalotti AB - We consider a generalization of Riemannian geometry that naturally arises in the framework of control theory. Let $X$ and $Y$ be two smooth vector fields on a two-dimensional manifold $M$. If $X$ and $Y$ are everywhere linearly independent, then they define a classical Riemannian metric on $M$ (the metric for which they are orthonormal) and they give to $M$ the structure of metric space. If $X$ and $Y$ become linearly dependent somewhere on $M$, then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way are called almost-Riemannian structures. They are special cases of rank-varying sub-Riemannian structures, which are naturally defined in terms of submodules of the space of smooth vector fields on $M$. Almost-Riemannian structures show interesting phenomena, in particular for what concerns the relation between curvature, presence of conjugate points, and topology of the manifold. The main result of the paper is a generalization to almost-Riemannian structures of the Gauss-Bonnet formula. UR - http://hdl.handle.net/1963/1869 U1 - 2353 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - High-order angles in almost-Riemannian geometry Y1 - 2007 A1 - Ugo Boscain A1 - Mario Sigalotti AB - Let X and Y be two smooth vector fields on a two-dimensional manifold M. If X and Y are everywhere linearly independent, then they define a Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become linearly dependent somewhere on M, then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way are called almost-Riemannian structures. The main result of the paper is a generalization to almost-Riemannian structures of the Gauss-Bonnet formula for domains with piecewise-C2 boundary. The main feature of such formula is the presence of terms that play the role of high-order angles at the intersection points with the set of singularities. UR - http://hdl.handle.net/1963/1995 U1 - 2201 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Stability of planar nonlinear switched systems Y1 - 2006 A1 - Ugo Boscain A1 - Grégoire Charlot A1 - Mario Sigalotti AB - We consider the time-dependent nonlinear system ˙ q(t) = u(t)X(q(t)) + (1 − u(t))Y (q(t)), where q ∈ R2, X and Y are two smooth vector fields, globally asymptotically stable at the origin and u : [0,∞) → {0, 1} is an arbitrary measurable function. Analysing the topology of the set where X and Y are parallel, we give some sufficient and some necessary conditions for global asymptotic stability, uniform with respect to u(.). Such conditions can be verified without any integration or construction of a Lyapunov function, and they are robust under small perturbations of the vector fields. JF - Discrete Contin. Dyn. Syst. 15 (2006) 415-432 UR - http://hdl.handle.net/1963/1710 U1 - 2441 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Regularity properties of optimal trajectories of single-input control systems in dimension three JF - Journal of Mathematical Sciences 126 (2005) 1561-1573 Y1 - 2005 A1 - Mario Sigalotti AB - Let q=f(q)+ug(q) be a smooth control system on a three-dimensional manifold. Given a point q 0 of the manifold at which the iterated Lie brackets of f and g satisfy some prescribed independence condition, we analyze the structure of a control function u(t) corresponding to a time-optimal trajectory lying in a neighborhood of q 0. The control turns out to be the concatenation of some bang-bang and some singular arcs. More general optimality criteria than time-optimality are considered. The paper is a step toward to the analysis of generic single-input systems affine in the control in dimension 3. The main techniques used are second-order optimality conditions and, in particular, the index of the second variation of the switching times for bang-bang trajectories. PB - Springer UR - http://hdl.handle.net/1963/4794 U1 - 4564 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - On the local structure of optimal trajectories in R3 JF - SIAM J. Control Optim. 42 (2003) 513-531 Y1 - 2003 A1 - Andrei A. Agrachev A1 - Mario Sigalotti AB - We analyze the structure of a control function u(t) corresponding to an optimal trajectory for the system $\\\\dot q =f(q)+u\\\\, g(q)$ in a three-dimensional manifold, near a point where some nondegeneracy conditions are satisfied. The kind of optimality which is studied includes time-optimality. The control turns out to be the concatenation of some bang and some singular arcs. Studying the index of the second variation of the switching times, the number of such arcs is bounded by four. PB - SISSA Library UR - http://hdl.handle.net/1963/1612 U1 - 2506 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - THES T1 - Single-Input Control Affine Systems: Local Regularity of Optimal Trajectories and a Geometric Controllability Problem Y1 - 2003 A1 - Mario Sigalotti PB - SISSA UR - http://hdl.handle.net/1963/5342 U1 - 5170 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - The passage from nonconvex discrete systems to variational problems in Sobolev spaces: the one-dimensional case JF - Proc. Steklov Inst. Math. 236 (2002) 395-414 Y1 - 2002 A1 - Andrea Braides A1 - Maria Stella Gelli A1 - Mario Sigalotti PB - MAIK Nauka/Interperiodica UR - http://hdl.handle.net/1963/3130 U1 - 1203 U2 - Mathematics U3 - Functional Analysis and Applications ER -