In this paper we prove reducibility of a class of first order, quasi-linear, quasi-periodic time dependent PDEs on the torus∂tu+ζ⋅∂xu+a(ωt,x)⋅∂xu=0,x∈Td,ζ∈Rd,ω∈Rν. As a consequence we deduce a stability result on the associated Cauchy problem in Sobolev spaces. By the identification between first order operators and vector fields this problem can be formulated as the problem of finding a change of coordinates which conjugates a weakly perturbed constant vector field on Tν+d to a constant diophantine flow. For this purpose we generalize Moser's straightening theorem: considering smooth perturbations we prove that the corresponding straightening torus diffeomorphism is smooth, under the assumption that the perturbation is small only in some given Sobolev norm and that the initial frequency belongs to some Cantor-like set. In view of applications in KAM theory for PDEs we provide also tame estimates on the change of variables.

VL - 276 UR - http://www.sciencedirect.com/science/article/pii/S0022123618303793 ER - TY - RPRT T1 - Reducibility for a class of weakly dispersive linear operators arising from the Degasperis Procesi equation Y1 - 2018 A1 - Roberto Feola A1 - Filippo Giuliani A1 - Michela Procesi ER - TY - JOUR T1 - An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds Y1 - 2014 A1 - Massimiliano Berti A1 - Livia Corsi A1 - Michela Procesi AB - We prove an abstract implicit function theorem with parameters for smooth operators defined on scales of sequence spaces, modeled for the search of quasi-periodic solutions of PDEs. The tame estimates required for the inverse linearised operators at each step of the iterative scheme are deduced via a multiscale inductive argument. The Cantor-like set of parameters where the solution exists is defined in a non inductive way. This formulation completely decouples the iterative scheme from the measure theoretical analysis of the parameters where the small divisors non-resonance conditions are verified. As an application, we deduce the existence of quasi-periodic solutions for forced NLW and NLS equations on any compact Lie group or manifold which is homogeneous with respect to a compact Lie group, extending previous results valid only for tori. A basic tool of harmonic analysis is the highest weight theory for the irreducible representations of compact Lie groups. PB - Springer UR - http://urania.sissa.it/xmlui/handle/1963/34651 U1 - 34858 U2 - Mathematics ER - TY - JOUR T1 - KAM for Reversible Derivative Wave Equations JF - Arch. Ration. Mech. Anal. Y1 - 2014 A1 - Massimiliano Berti A1 - Luca Biasco A1 - Michela Procesi AB -We prove the existence of Cantor families of small amplitude, analytic, linearly stable quasi-periodic solutions of reversible derivative wave equations.

PB - Springer VL - 212 UR - http://urania.sissa.it/xmlui/handle/1963/34646 IS - 3 U1 - 34850 U2 - Mathematics ER - TY - JOUR T1 - Existence and stability of quasi-periodic solutions for derivative wave equations JF - Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni Y1 - 2013 A1 - Massimiliano Berti A1 - Luca Biasco A1 - Michela Procesi KW - Constant coefficients KW - Dynamical systems KW - Existence and stability KW - Infinite dimensional KW - KAM for PDEs KW - Linearized equations KW - Lyapunov exponent KW - Lyapunov methods KW - Quasi-periodic solution KW - Small divisors KW - Wave equations AB - In this note we present the new KAM result in [3] which proves the existence of Cantor families of small amplitude, analytic, quasi-periodic solutions of derivative wave equations, with zero Lyapunov exponents and whose linearized equation is reducible to constant coefficients. In turn, this result is derived by an abstract KAM theorem for infinite dimensional reversible dynamical systems*. VL - 24 N1 - cited By (since 1996)0 ER - TY - JOUR T1 - KAM theory for the Hamiltonian derivative wave equation JF - Annales Scientifiques de l'Ecole Normale Superieure Y1 - 2013 A1 - Massimiliano Berti A1 - Luca Biasco A1 - Michela Procesi AB -We prove an infinite dimensional KAM theorem which implies the existence of Can- tor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations. © 2013 Société Mathématique de France.

VL - 46 N1 - cited By (since 1996)4 ER - TY - JOUR T1 - Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces JF - Duke Mathematical Journal Y1 - 2011 A1 - Massimiliano Berti A1 - Michela Procesi AB - We develop linear and nonlinear harmonic analysis on compact Lie groups and homogeneous spaces relevant for the theory of evolutionary Hamiltonian PDEs. A basic tool is the theory of the highest weight for irreducible representations of compact Lie groups. This theory provides an accurate description of the eigenvalues of the Laplace-Beltrami operator as well as the multiplication rules of its eigenfunctions. As an application, we prove the existence of Cantor families of small amplitude time-periodic solutions for wave and Schr¨odinger equations with differentiable nonlinearities. We apply an abstract Nash-Moser implicit function theorem to overcome the small divisors problem produced by the degenerate eigenvalues of the Laplace operator. We provide a new algebraic framework to prove the key tame estimates for the inverse linearized operators on Banach scales of Sobolev functions. VL - 159 IS - 3 ER - TY - JOUR T1 - An abstract Nash-Moser theorem with parameters and applications to PDEs JF - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis Y1 - 2010 A1 - Massimiliano Berti A1 - Philippe Bolle A1 - Michela Procesi KW - Abstracting KW - Aircraft engines KW - Finite dimensional KW - Hamiltonian PDEs KW - Implicit function theorem KW - Invariant tori KW - Iterative schemes KW - Linearized operators KW - Mathematical operators KW - Moser theorem KW - Non-Linearity KW - Nonlinear equations KW - Nonlinear wave equation KW - Periodic solution KW - Point of interest KW - Resonance phenomena KW - Small divisors KW - Sobolev KW - Wave equations AB - We prove an abstract Nash-Moser implicit function theorem with parameters which covers the applications to the existence of finite dimensional, differentiable, invariant tori of Hamiltonian PDEs with merely differentiable nonlinearities. The main new feature of the abstract iterative scheme is that the linearized operators, in a neighborhood of the expected solution, are invertible, and satisfy the "tame" estimates, only for proper subsets of the parameters. As an application we show the existence of periodic solutions of nonlinear wave equations on Riemannian Zoll manifolds. A point of interest is that, in presence of possibly very large "clusters of small divisors", due to resonance phenomena, it is more natural to expect solutions with only Sobolev regularity. © 2009 Elsevier Masson SAS. All rights reserved. VL - 27 N1 - cited By (since 1996)9 ER - TY - JOUR T1 - Quasi-periodic solutions of completely resonant forced wave equations JF - Comm. Partial Differential Equations 31 (2006) 959 - 985 Y1 - 2006 A1 - Massimiliano Berti A1 - Michela Procesi AB - We prove existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced nonlinear wave equations with periodic spatial boundary conditions. We consider both the cases the forcing frequency is: (Case A) a rational number and (Case B) an irrational number. UR - http://hdl.handle.net/1963/2234 U1 - 2010 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasi-periodic oscillations for wave equations under periodic forcing JF - Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 109-116 Y1 - 2005 A1 - Massimiliano Berti A1 - Michela Procesi PB - Accademia Nazionale dei Lincei UR - http://hdl.handle.net/1963/4583 U1 - 4350 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER -