We define quantum lens spaces as ‘direct sums of line bundles’ and exhibit them as ‘total spaces’ of certain principal bundles over quantum projective spaces. For each of these quantum lens spaces we construct an analogue of the classical Gysin sequence in K-theory. We use the sequence to compute the K-theory of the quantum lens spaces, in particular to give explicit geometric representatives of their K-theory classes. These representatives are interpreted as ‘line bundles’ over quantum lens spaces and generically define ‘torsion classes’. We work out explicit examples of these classes.

VL - 9 ER - TY - CHAP T1 - Pimsner Algebras and Circle Bundles T2 - Noncommutative Analysis, Operator Theory and Applications Y1 - 2016 A1 - Francesca Arici A1 - Francesco D'Andrea A1 - Giovanni Landi ED - Alpay, Daniel ED - Cipriani, Fabio ED - Colombo, Fabrizio ED - Guido, Daniele ED - Sabadini, Irene ED - Sauvageot, Jean-Luc AB -We report on the connections between noncommutative principal circle bundles, Pimsner algebras and strongly graded algebras. We illustrate several results with examples of quantum weighted projective and lens spaces and θ-deformations.

JF - Noncommutative Analysis, Operator Theory and Applications PB - Springer International Publishing CY - Cham SN - 978-3-319-29116-1 UR - https://doi.org/10.1007/978-3-319-29116-1_1 ER - TY - JOUR T1 - Pimsner algebras and Gysin sequences from principal circle actions JF - Journal of Noncommutative Geometry Y1 - 2016 A1 - Francesca Arici A1 - Jens Kaad A1 - Giovanni Landi VL - 10 UR - http://hdl.handle.net/2066/162951 ER - TY - JOUR T1 - Moduli spaces of noncommutative instantons: gauging away noncommutative parameters JF - Quarterly Journal of Mathematics (2012) 63 (1): 41-86 Y1 - 2012 A1 - Simon Brain A1 - Giovanni Landi AB - Using the theory of noncommutative geometry in a braided monoidal category, we improve upon a previous construction of noncommutative families of instantons of arbitrary charge on the deformed sphere S^4_\\\\theta. We formulate a notion of noncommutative parameter spaces for families of instantons and we explore what it means for such families to be gauge equivalent, as well as showing how to remove gauge parameters using a noncommutative quotient construction. Although the parameter spaces are a priori noncommutative, we show that one may always recover a classical parameter space by making an appropriate choice of gauge transformation. PB - Oxford University Press UR - http://hdl.handle.net/1963/3777 U1 - 548 U2 - Mathematics U3 - Mathematical Physics ER - TY - RPRT T1 - Families of Monads and Instantons from a Noncommutative ADHM Construction Y1 - 2009 A1 - Simon Brain A1 - Giovanni Landi AB - We give a \\\\theta-deformed version of the ADHM construction of SU(2) instantons with arbitrary topological charge on the sphere S^4. Classically the instanton gauge fields are constructed from suitable monad data; we show that in the deformed case the set of monads is itself a noncommutative space. We use these monads to construct noncommutative `families\\\' of SU(2) instantons on the deformed sphere S^4_\\\\theta. We also compute the topological charge of each of the families. Finally we discuss what it means for such families to be gauge equivalent. UR - http://hdl.handle.net/1963/3478 U1 - 786 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Gauged Laplacians on quantum Hopf bundles JF - Comm. Math. Phys. 287 (2009) 179-209 Y1 - 2009 A1 - Giovanni Landi A1 - Cesare Reina A1 - Alessandro Zampini AB - We study gauged Laplacian operators on line bundles on a quantum 2-dimensional sphere. Symmetry under the (co)-action of a quantum group allows for their complete diagonalization. These operators describe `excitations moving on the quantum sphere\\\' in the field of a magnetic monopole. The energies are not invariant under the exchange monopole/antimonopole, that is under inverting the direction of the magnetic field. There are potential applications to models of quantum Hall effect. PB - Springer UR - http://hdl.handle.net/1963/3540 U1 - 1161 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - The Isospectral Dirac Operator on the 4-dimensional Orthogonal Quantum Sphere JF - Comm. Math. Phys. 279 (2008) 77-116 Y1 - 2008 A1 - Francesco D'Andrea A1 - Ludwik Dabrowski A1 - Giovanni Landi AB - Equivariance under the action of Uq(so(5)) is used to compute the left regular and (chiral) spinorial representations of the algebra of the quantum Euclidean 4-sphere S^4_q. These representations are the constituents of a spectral triple on this sphere with a Dirac operator which is isospectral to the canonical one of the spin structure of the round undeformed four-sphere and which gives metric dimension four for the noncommutative geometry. Non-triviality of the geometry is proved by pairing the associated Fredholm module with an `instanton\\\' projection. A real structure which satisfies all required properties modulo a suitable ideal of `infinitesimals\\\' is also introduced. UR - http://hdl.handle.net/1963/2567 U1 - 1553 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Noncommutative families of instantons JF - Int. Math. Res. Not. vol. 2008, Article ID rnn038 Y1 - 2008 A1 - Giovanni Landi A1 - Chiara Pagani A1 - Cesare Reina A1 - Walter van Suijlekom AB - We construct $\\\\theta$-deformations of the classical groups SL(2,H) and Sp(2). Coacting on the basic instanton on a noncommutative four-sphere $S^4_\\\\theta$, we construct a noncommutative family of instantons of charge 1. The family is parametrized by the quantum quotient of $SL_\\\\theta(2,H)$ by $Sp_\\\\theta(2)$. PB - Oxford University Press UR - http://hdl.handle.net/1963/3417 U1 - 918 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - The Noncommutative Geometry of the Quantum Projective Plane JF - Rev. Math. Phys. 20 (2008) 979-1006 Y1 - 2008 A1 - Francesco D'Andrea A1 - Ludwik Dabrowski A1 - Giovanni Landi AB - We study the spectral geometry of the quantum projective plane CP^2_q. In particular, we construct a Dirac operator which gives a 0^+ summable triple, equivariant under U_q(su(3)). UR - http://hdl.handle.net/1963/2548 U1 - 1571 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Dirac operators on all Podles quantum spheres JF - J. Noncomm. Geom. 1 (2007) 213-239 Y1 - 2007 A1 - Francesco D'Andrea A1 - Ludwik Dabrowski A1 - Giovanni Landi A1 - Elmar Wagner AB - We construct spectral triples on all Podles quantum spheres. These noncommutative geometries are equivariant for a left action of $U_q(su(2))$ and are regular, even and of metric dimension 2. They are all isospectral to the undeformed round geometry of the 2-sphere. There is also an equivariant real structure for which both the commutant property and the first order condition for the Dirac operators are valid up to infinitesimals of arbitrary order. UR - http://hdl.handle.net/1963/2177 U1 - 2067 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - A Hopf bundle over a quantum four-sphere from the symplectic group JF - Commun. Math. Phys. 263 (2006) 65-88 Y1 - 2006 A1 - Giovanni Landi A1 - Chiara Pagani A1 - Cesare Reina AB - We construct a quantum version of the SU(2) Hopf bundle $S^7 \\\\to S^4$. The quantum sphere $S^7_q$ arises from the symplectic group $Sp_q(2)$ and a quantum 4-sphere $S^4_q$ is obtained via a suitable self-adjoint idempotent $p$ whose entries generate the algebra $A(S^4_q)$ of polynomial functions over it. This projection determines a deformation of an (anti-)instanton bundle over the classical sphere $S^4$. We compute the fundamental $K$-homology class of $S^4_q$ and pair it with the class of $p$ in the $K$-theory getting the value -1 for the topological charge. There is a right coaction of $SU_q(2)$ on $S^7_q$ such that the algebra $A(S^7_q)$ is a non trivial quantum principal bundle over $A(S^4_q)$ with structure quantum group $A(SU_q(2))$. UR - http://hdl.handle.net/1963/2179 U1 - 2065 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - The Dirac operator on SU_q(2) JF - Commun. Math. Phys. 259 (2005) 729-759 Y1 - 2005 A1 - Ludwik Dabrowski A1 - Giovanni Landi A1 - Andrzej Sitarz A1 - Walter van Suijlekom A1 - Joseph C. Varilly AB - We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order. PB - Springer UR - http://hdl.handle.net/1963/4425 N1 - v2: minor changes U1 - 4175 U2 - Mathematics U3 - Mathematical Physics U4 - -1 ER - TY - JOUR T1 - The local index formula for SUq(2) JF - K-Theory 35 (2005) 375-394 Y1 - 2005 A1 - Walter van Suijlekom A1 - Ludwik Dabrowski A1 - Giovanni Landi A1 - Andrzej Sitarz A1 - Joseph C. Varilly AB - We discuss the local index formula of Connes-Moscovici for the isospectral noncommutative geometry that we have recently constructed on quantum SU(2). We work out the cosphere bundle and the dimension spectrum as well as the local cyclic cocycles yielding the index formula. UR - http://hdl.handle.net/1963/1713 U1 - 2438 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Principal fibrations from noncommutative spheres JF - Comm. Math. Phys. 260 (2005) 203-225 Y1 - 2005 A1 - Giovanni Landi A1 - Walter van Suijlekom AB - We construct noncommutative principal fibrations S_\\\\theta^7 \\\\to S_\\\\theta^4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. The algebra inclusion $A(S_\\\\theta^4) \\\\into A(S_\\\\theta^7)$ is an example of a not trivial quantum principal bundle. UR - http://hdl.handle.net/1963/2284 U1 - 1732 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - The spectral geometry of the equatorial Podles sphere JF - C. R. Math. 340 (2005) 819-822 Y1 - 2005 A1 - Ludwik Dabrowski A1 - Giovanni Landi A1 - Mario Paschke A1 - Andrzej Sitarz AB - We propose a slight modification of the properties of a spectral geometry a la Connes, which allows for some of the algebraic relations to be satisfied only modulo compact operators. On the equatorial Podles sphere we construct suq2-equivariant Dirac operator and real structure which satisfy these modified properties. UR - http://hdl.handle.net/1963/2275 U1 - 1972 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Fredholm modules for quantum euclidean spheres JF - J. Geom. Phys. 49 (2004) 272-293 Y1 - 2004 A1 - Eli Hawkins A1 - Giovanni Landi AB - The quantum Euclidean spheres, $S_q^{N-1}$, are (noncommutative) homogeneous spaces of quantum orthogonal groups, $\\\\SO_q(N)$. The *-algebra $A(S^{N-1}_q)$ of polynomial functions on each of these is given by generators and relations which can be expressed in terms of a self-adjoint, unipotent matrix. We explicitly construct complete sets of generators for the K-theory (by nontrivial self-adjoint idempotents and unitaries) and the K-homology (by nontrivial Fredholm modules) of the spheres $S_q^{N-1}$. We also construct the corresponding Chern characters in cyclic homology and cohomology and compute the pairing of K-theory with K-homology. On odd spheres (i. e., for N even) we exhibit unbounded Fredholm modules by means of a natural unbounded operator D which, while failing to have compact resolvent, has bounded commutators with all elements in the algebra $A(S^{N-1}_q)$. PB - SISSA Library UR - http://hdl.handle.net/1963/1636 U1 - 2482 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Non-linear sigma-models in noncommutative geometry: fields with values in finite spaces JF - Mod. Phys. Lett. A 18 (2003) 2371-2379 Y1 - 2003 A1 - Ludwik Dabrowski A1 - Thomas Krajewski A1 - Giovanni Landi AB - We study sigma-models on noncommutative spaces, notably on noncommutative tori. We construct instanton solutions carrying a nontrivial topological charge q and satisfying a Belavin-Polyakov bound. The moduli space of these instantons is conjectured to consists of an ordinary torus endowed with a complex structure times a projective space $CP^{q-1}$. PB - World Scientific UR - http://hdl.handle.net/1963/3215 U1 - 1086 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Instanton algebras and quantum 4-spheres JF - Differential Geom. Appl. 16 (2002) 277-284 Y1 - 2002 A1 - Ludwik Dabrowski A1 - Giovanni Landi AB - We study some generalized instanton algebras which are required to describe `instantonic complex rank 2 bundles\\\'. The spaces on which the bundles are defined are not prescribed from the beginning but rather are obtained from some natural requirements on the instantons. They turn out to be quantum 4-spheres $S^4_q$, with $q\\\\in\\\\IC$, and the instantons are described by self-adjoint idempotents e. We shall also clarify some issues related to the vanishing of the first Chern-Connes class $ch_1(e)$ and on the use of the second Chern-Connes class $ch_2(e)$ as a volume form. PB - Elsevier UR - http://hdl.handle.net/1963/3134 U1 - 1199 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Instantons on the Quantum 4-Spheres S^4_q JF - Comm. Math. Phys. 221 (2001) 161-168 Y1 - 2001 A1 - Ludwik Dabrowski A1 - Giovanni Landi A1 - Tetsuya Masuda AB - We introduce noncommutative algebras $A_q$ of quantum 4-spheres $S^4_q$, with $q\\\\in\\\\IR$, defined via a suspension of the quantum group $SU_q(2)$, and a quantum instanton bundle described by a selfadjoint idempotent $e\\\\in \\\\Mat_4(A_q)$, $e^2=e=e^*$. Contrary to what happens for the classical case or for the noncommutative instanton constructed in Connes-Landi, the first Chern-Connes class $ch_1(e)$ does not vanish thus signaling a dimension drop. The second Chern-Connes class $ch_2(e)$ does not vanish as well and the couple $(ch_1(e), ch_2(e))$ defines a cycle in the $(b,B)$ bicomplex of cyclic homology. PB - Springer UR - http://hdl.handle.net/1963/3135 U1 - 1198 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Some Properties of Non-linear sigma-Models in Noncommutative Geometry JF - Int. J. Mod. Phys. B 14 (2000) 2367-2382 Y1 - 2000 A1 - Ludwik Dabrowski A1 - Thomas Krajewski A1 - Giovanni Landi AB - We introduce non-linear $\\\\sigma$-models in the framework of noncommutative geometry with special emphasis on models defined on the noncommutative torus. We choose as target spaces the two point space and the circle and illustrate some characteristic features of the corresponding $\\\\sigma$-models. In particular we construct a $\\\\sigma$-model instanton with topological charge equal to 1. We also define and investigate some properties of a noncommutative analogue of the Wess-Zumino-Witten model. PB - SISSA Library UR - http://hdl.handle.net/1963/1373 U1 - 3082 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Algebraic differential calculus for gauge theories JF - Nuclear Phys. B. Proc. Suppl. 18A (1990), 171 Y1 - 1990 A1 - Giovanni Landi A1 - Giuseppe Marmo PB - SISSA Library UR - http://hdl.handle.net/1963/891 U1 - 2900 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Chern-Simons forms on principal superfiber bundles JF - J.Math.Phys.31:45,1990 Y1 - 1990 A1 - Giovanni Landi A1 - Claudio Bartocci A1 - Ugo Bruzzo AB - A graded Weil homomorphism is defined for principal superfiber bundles and the related transgression (or Chern-Simons) forms are introduced. As an example of the application of these concepts, a ``superextension\\\'\\\' of the Dirac monopole is discussed. PB - SISSA Library UR - http://hdl.handle.net/1963/590 U1 - 3314 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Algebraic reduction of the \\\'t Hooft-Polyakov monopole to the Dirac monopole. JF - Phys. Lett. B 201 (1988), no. 1, 101-104. Y1 - 1988 A1 - Giovanni Landi A1 - Giuseppe Marmo PB - SISSA Library UR - http://hdl.handle.net/1963/578 U1 - 3326 U2 - Mathematics U3 - Mathematical Physics ER - TY - THES T1 - An Algebraic Setting for Gauge Theories Y1 - 1988 A1 - Giovanni Landi PB - SISSA UR - http://hdl.handle.net/1963/5828 U1 - 5677 U2 - Mathematics U3 - Mathematical Physics U4 - -1 ER - TY - JOUR T1 - Einstein algebras and the algebraic Kaluza-Klein monopole. JF - Phys. Lett. B 210 (1988), no. 1-2, 68--72. Y1 - 1988 A1 - Giovanni Landi A1 - Giuseppe Marmo PB - SISSA Library UR - http://hdl.handle.net/1963/603 U1 - 3301 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Extensions of Lie superalgebras and supersymmetric Abelian gauge fields. JF - Phys. Lett. B 193 (1987), no. 1, 61-66. Y1 - 1987 A1 - Giovanni Landi A1 - Giuseppe Marmo PB - SISSA Library UR - http://hdl.handle.net/1963/507 U1 - 3397 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Graded Chern-Simons terms JF - Phys. Lett. B 192 (1987), no. 1-2, 81-88. Y1 - 1987 A1 - Giovanni Landi A1 - Giuseppe Marmo PB - SISSA Library UR - http://hdl.handle.net/1963/508 U1 - 3396 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Lie algebra extensions and abelian monopoles. JF - Phys. Lett. B 195 (1987), no. 3, 429-434 Y1 - 1987 A1 - Giovanni Landi A1 - Giuseppe Marmo PB - SISSA Library UR - http://hdl.handle.net/1963/506 U1 - 3398 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - The natural spinor connection on $S\\\\sb 8$ is a gauge field JF - Lett. Math. Phys. 11 (1986), no. 2, 171-175 Y1 - 1986 A1 - Giovanni Landi PB - SISSA Library UR - http://hdl.handle.net/1963/448 U1 - 3455 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Flat connections for Lax hierarchies on coadjoint orbits JF - Phys. Lett. A 108 (1985), no. 7, 311-314 Y1 - 1985 A1 - Giovanni Landi A1 - Sergio De Filippo PB - SISSA Library UR - http://hdl.handle.net/1963/460 U1 - 3443 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Maximal acceleration and Sakharov's limiting temperature JF - Lett. Nuovo Cim. 42 (1985) 70-72 Y1 - 1985 A1 - Eduardo R. Caianiello A1 - Giovanni Landi AB -It is shown that Sakharov's maximal temperature, derived by him from astrophysical considerations, is a straightforward consequence of the maximal acceleration introduced by us in previous works.

PB - Società Italiana di Fisica UR - http://hdl.handle.net/1963/372 U1 - 3595 U2 - Physics U3 - Elementary Particle Theory ER -