We consider the asymptotic behavior of a system of multi-component trapped bosons, when the total particle number N becomes large. In the dilute regime, when the interaction potentials have the length scale of order O(N−1), we show that the leading order of the ground state energy is captured correctly by the Gross–Pitaevskii energy functional and that the many-body ground state fully condensates on the Gross–Pitaevskii minimizers. In the mean-field regime, when the interaction length scale is O(1), we are able to verify Bogoliubov’s approximation and obtain the second order expansion of the ground state energy. While such asymptotic results have several precursors in the literature on one-component condensates, the adaptation to the multi-component setting is non-trivial in various respects and the analysis will be presented in detail.

VL - 31 UR - https://doi.org/10.1142/S0129055X19500053 ER - TY - JOUR T1 - Point-Like Perturbed Fractional Laplacians Through Shrinking Potentials of Finite Range JF - Complex Analysis and Operator Theory Y1 - 2019 A1 - Alessandro Michelangeli A1 - Raffaele Scandone AB -We construct the rank-one, singular (point-like) perturbations of the d-dimensional fractional Laplacian in the physically meaningful norm-resolvent limit of fractional Schrödinger operators with regular potentials centred around the perturbation point and shrinking to a delta-like shape. We analyse both possible regimes, the resonance-driven and the resonance-independent limit, depending on the power of the fractional Laplacian and the spatial dimension. To this aim, we also qualify the notion of zero-energy resonance for Schrödinger operators formed by a fractional Laplacian and a regular potential.

UR - https://doi.org/10.1007/s11785-019-00927-w ER - TY - JOUR T1 - Effective non-linear spinor dynamics in a spin-1 Bose–Einstein condensate JF - Journal of Physics A: Mathematical and Theoretical Y1 - 2018 A1 - Alessandro Michelangeli A1 - Alessandro Olgiati AB -We derive from first principles the experimentally observed effective dynamics of a spinor Bose gas initially prepared as a Bose–Einstein condensate and then left free to expand ballistically. In spinor condensates, which represent one of the recent frontiers in the manipulation of ultra-cold atoms, particles interact with a two-body spatial interaction and a spin–spin interaction. The effective dynamics is well-known to be governed by a system of coupled semi-linear Schrödinger equations: we recover this system, in the sense of marginals in the limit of infinitely many particles, with a mean-field re-scaling of the many-body Hamiltonian. When the resulting control of the dynamical persistence of condensation is quantified with the parameters of modern observations, we obtain a bound that remains quite accurate for the whole typical duration of the experiment.

PB - IOP Publishing VL - 51 UR - https://doi.org/10.1088%2F1751-8121%2Faadbc2 ER - TY - JOUR T1 - Fractional powers and singular perturbations of quantum differential Hamiltonians JF - Journal of Mathematical Physics Y1 - 2018 A1 - Alessandro Michelangeli A1 - Andrea Ottolini A1 - Raffaele Scandone AB -We consider the fractional powers of singular (point-like) perturbations of the Laplacian and the singular perturbations of fractional powers of the Laplacian, and we compare two such constructions focusing on their perturbative structure for resolvents and on the local singularity structure of their domains. In application to the linear and non-linear Schrödinger equations for the corresponding operators, we outline a programme of relevant questions that deserve being investigated.

VL - 59 UR - https://doi.org/10.1063/1.5033856 ER - TY - JOUR T1 - On fractional powers of singular perturbations of the Laplacian JF - Journal of Functional Analysis Y1 - 2018 A1 - Vladimir Georgiev A1 - Alessandro Michelangeli A1 - Raffaele Scandone KW - Point interactions KW - Regular and singular component of a point-interaction operator KW - Singular perturbations of the Laplacian AB -We qualify a relevant range of fractional powers of the so-called Hamiltonian of point interaction in three dimensions, namely the singular perturbation of the negative Laplacian with a contact interaction supported at the origin. In particular we provide an explicit control of the domain of such a fractional operator and of its decomposition into regular and singular parts. We also qualify the norms of the resulting singular fractional Sobolev spaces and their mutual control with the corresponding classical Sobolev norms.

VL - 275 UR - http://www.sciencedirect.com/science/article/pii/S0022123618301046 ER - TY - RPRT T1 - On Geometric Quantum Confinement in Grushin-Like Manifolds Y1 - 2018 A1 - Matteo Gallone A1 - Alessandro Michelangeli A1 - Eugenio Pozzoli AB - We study the problem of so-called geometric quantum confinement in a class of two-dimensional incomplete Riemannian manifold with metric of Grushin type. We employ a constant-fibre direct integral scheme, in combination with Weyl's analysis in each fibre, thus fully characterising the regimes of presence and absence of essential self-adjointness of the associated Laplace-Beltrami operator. UR - http://preprints.sissa.it/handle/1963/35322 N1 - 16 pages U1 - 35632 U2 - Mathematics U4 - 1 ER - TY - JOUR T1 - Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials JF - Zeitschrift für angewandte Mathematik und Physik Y1 - 2018 A1 - Paolo Antonelli A1 - Alessandro Michelangeli A1 - Raffaele Scandone AB -We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

VL - 69 UR - https://doi.org/10.1007/s00033-018-0938-5 ER - TY - RPRT T1 - Hydrogenoid Spectra with Central Perturbations Y1 - 2018 A1 - Matteo Gallone A1 - Alessandro Michelangeli AB - Through the Kreĭn-Višik-Birman extension scheme, unlike the previous classical analysis based on von Neumann's theory, we reproduce the construction and classification of all self-adjoint realisations of two intimately related models: the three-dimensional hydrogenoid-like Hamiltonians with singular perturbation supported at the centre (the nucleus), and the Schördinger operators on the halfline with Coulomb potentials centred at the origin. These two problems are technically equivalent, albeit sometimes treated by their own in the the literature. Based on such scheme, we then recover the formula to determine the eigenvalues of each self-adjoint extension, which are corrections to the non-relativistic hydrogenoid energy levels.We discuss in which respect the Kreĭn-Višik-Birman scheme is somehow more natural in yielding the typical boundary condition of self-adjointness at the centre of the perturbation and in identifying the eigenvalues of each extension. UR - http://preprints.sissa.it/handle/1963/35321 N1 - Mathematics Subject Classification (2010) 34L10 . 34L15 . 34L16 . 47B15 . 47B25 . 47N20 . 81Q10 . 81Q80 U1 - 35631 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - On Krylov solutions to infinite-dimensional inverse linear problems Y1 - 2018 A1 - Noe Caruso A1 - Alessandro Michelangeli A1 - Paolo Novati AB - We discuss, in the context of inverse linear problems in Hilbert space, the notion of the associated infinite-dimensional Krylov subspace and we produce necessary and sufficient conditions for the Krylov-solvability of the considered inverse problem. The presentation is based on theoretical results together with a series of model examples, and it is corroborated by specific numerical experiments. PB - SISSA UR - http://preprints.sissa.it/handle/1963/35327 U1 - 35638 U2 - Mathematics U4 - 1 ER - TY - JOUR T1 - Lp-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction JF - Annales Henri Poincaré Y1 - 2018 A1 - Gianfausto Dell'Antonio A1 - Alessandro Michelangeli A1 - Raffaele Scandone A1 - Kenji Yajima AB -We prove that, for arbitrary centres and strengths, the wave operators for three-dimensional Schrödinger operators with multi-centre local point interactions are bounded in Lp(R3)for 1<p<3 and unbounded otherwise.

VL - 19 UR - https://doi.org/10.1007/s00023-017-0628-4 ER - TY - RPRT T1 - Non-linear Gross-Pitaevskii dynamics of a 2D binary condensate: a numerical analysis Y1 - 2018 A1 - Alessandro Michelangeli A1 - Giuseppe Pitton AB - We present a numerical study of the two-dimensional Gross-Pitaevskii systems in a wide range of relevant regimes of population ratios and intra-species and inter-species interactions. Our numerical method is based on a Fourier collocation scheme in space combined with a fourth order integrating factor scheme in time. UR - http://preprints.sissa.it/handle/1963/35323 U1 - 35633 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - On real resonances for the three-dimensional, multi-centre point interaction Y1 - 2018 A1 - Alessandro Michelangeli A1 - Raffaele Scandone ER - TY - JOUR T1 - Singular Hartree equation in fractional perturbed Sobolev spaces JF - Journal of Nonlinear Mathematical Physics Y1 - 2018 A1 - Alessandro Michelangeli A1 - Alessandro Olgiati A1 - Raffaele Scandone AB -We establish the local and global theory for the Cauchy problem of the singular Hartree equation in three dimensions, that is, the modification of the non-linear Schrödinger equation with Hartree non-linearity, where the linear part is now given by the Hamiltonian of point interaction. The latter is a singular, self-adjoint perturbation of the free Laplacian, modelling a contact interaction at a fixed point. The resulting non-linear equation is the typical effective equation for the dynamics of condensed Bose gases with fixed point-like impurities. We control the local solution theory in the perturbed Sobolev spaces of fractional order between the mass space and the operator domain. We then control the global solution theory both in the mass and in the energy space.

PB - Taylor & Francis VL - 25 UR - https://doi.org/10.1080/14029251.2018.1503423 ER - TY - RPRT T1 - Truncation and convergence issues for bounded linear inverse problems in Hilbert space Y1 - 2018 A1 - Noe Caruso A1 - Alessandro Michelangeli A1 - Paolo Novati AB - We present a general discussion of the main features and issues that (bounded) inverse linear problems in Hilbert space exhibit when the dimension of the space is infinite. This includes the set-up of a consistent notation for inverse problems that are genuinely infinite-dimensional, the analysis of the finite-dimensional truncations, a discussion of the mechanisms why the error or the residual generically fail to vanish in norm, and the identification of practically plausible sufficient conditions for such indicators to be small in some weaker sense. The presentation is based on theoretical results together with a series of model examples and numerical tests. PB - SISSA UR - http://preprints.sissa.it/handle/1963/35326 U1 - 35637 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - On contact interactions realised as Friedrichs systems Y1 - 2017 A1 - Marko Erceg A1 - Alessandro Michelangeli AB - We realise the Hamiltonians of contact interactions in quantum mechanics within the framework of abstract Friedrichs systems. In particular, we show that the construction of the self-adjoint (or even only closed) operators of contact interaction supported at a fixed point can be associated with the construction of the bijective realisations of a suitable pair of abstract Friedrich operators. In this respect, the Hamiltonians of contact interaction provide novel examples of abstract Friedrich systems. UR - http://preprints.sissa.it/handle/1963/35298 U1 - 35604 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - Discrete spectra for critical Dirac-Coulomb Hamiltonians Y1 - 2017 A1 - Matteo Gallone A1 - Alessandro Michelangeli AB - The one-particle Dirac Hamiltonian with Coulomb interaction is known to be realised, in a regime of large (critical) couplings, by an infinite multiplicity of distinct self-adjoint operators, including a distinguished physically most natural one. For the latter, Sommerfeld’s celebrated fine structure formula provides the well-known expression for the eigenvalues in the gap of the continuum spectrum. Exploiting our recent general classification of all other self-adjoint realisations, we generalise Sommerfeld’s formula so as to determine the discrete spectrum of all other self-adjoint versions of the Dirac-Coulomb Hamiltonian. Such discrete spectra display naturally a fibred structure, whose bundle covers the whole gap of the continuum spectrum. UR - http://preprints.sissa.it/handle/1963/35300 U1 - 35606 U2 - Mathematics U4 - 1 ER - TY - CHAP T1 - Dispersive Estimates for Schrödinger Operators with Point Interactions in ℝ3 T2 - Advances in Quantum Mechanics: Contemporary Trends and Open Problems Y1 - 2017 A1 - Felice Iandoli A1 - Raffaele Scandone ED - Alessandro Michelangeli ED - Gianfausto Dell'Antonio AB -The study of dispersive properties of Schrödinger operators with point interactions is a fundamental tool for understanding the behavior of many body quantum systems interacting with very short range potential, whose dynamics can be approximated by non linear Schrödinger equations with singular interactions. In this work we proved that, in the case of one point interaction in $\mathbb{R}^3$, the perturbed Laplacian satisfies the same $L^p$−$L^q$ estimates of the free Laplacian in the smaller regime $q \in [2,3)$. These estimates are implied by a recent result concerning the Lpboundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime $q \geq 3$.

JF - Advances in Quantum Mechanics: Contemporary Trends and Open Problems PB - Springer International Publishing CY - Cham SN - 978-3-319-58904-6 UR - https://doi.org/10.1007/978-3-319-58904-6_11 ER - TY - CHAP T1 - Effective Non-linear Dynamics of Binary Condensates and Open Problems T2 - Advances in Quantum Mechanics: Contemporary Trends and Open Problems Y1 - 2017 A1 - Alessandro Olgiati ED - Alessandro Michelangeli ED - Gianfausto Dell'Antonio AB -We report on a recent result concerning the effective dynamics for a mixture of Bose-Einstein condensates, a class of systems much studied in physics and receiving a large amount of attention in the recent literature in mathematical physics; for such models, the effective dynamics is described by a coupled system of non-linear Schödinger equations. After reviewing and commenting our proof in the mean-field regime from a previous paper, we collect the main details needed to obtain the rigorous derivation of the effective dynamics in the Gross-Pitaevskii scaling limit.

JF - Advances in Quantum Mechanics: Contemporary Trends and Open Problems PB - Springer International Publishing CY - Cham SN - 978-3-319-58904-6 UR - https://doi.org/10.1007/978-3-319-58904-6_14 ER - TY - RPRT T1 - Friedrichs systems in a Hilbert space framework: solvability and multiplicity Y1 - 2017 A1 - Nenad Antonić A1 - Marko Erceg A1 - Alessandro Michelangeli AB - The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide suffcient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples. UR - http://preprints.sissa.it/handle/1963/35280 U1 - 35587 U2 - Mathematics U4 - 1 ER - TY - JOUR T1 - Gross-Pitaevskii non-linear dynamics for pseudo-spinor condensates JF - Journal of Nonlinear Mathematical Physics Y1 - 2017 A1 - Alessandro Michelangeli A1 - Alessandro Olgiati AB -We derive the equations for the non-linear effective dynamics of a so called pseudo-spinor Bose-Einstein condensate, which emerges from the linear many-body Schrödinger equation at the leading order in the number of particles. The considered system is a three-dimensional diluted gas of identical bosons with spin, possibly confined in space, and coupled with an external time-dependent magnetic field; particles also interact among themselves through a short-scale repulsive interaction. The limit of infinitely many particles is monitored in the physically relevant Gross-Pitaevskii scaling. In our main theorem, if at time zero the system is in a phase of complete condensation (at the level of the reduced one-body marginal) and with energy per particle fixed by the Gross-Pitaevskii functional, then such conditions persist also at later times, with the one-body orbital of the condensate evolving according to a system of non-linear cubic Schrödinger equations coupled among themselves through linear (Rabi) terms. The proof relies on an adaptation to the spinor setting of Pickl’s projection counting method developed for the scalar case. Quantitative rates of convergence are available, but not made explicit because evidently non-optimal. In order to substantiate the formalism and the assumptions made in the main theorem, in an introductory section we review the mathematical formalisation of modern typical experiments with pseudo-spinor condensates.

PB - Taylor & Francis VL - 24 UR - https://doi.org/10.1080/14029251.2017.1346348 ER - TY - RPRT T1 - Krein-Visik-Birman self-adjoint extension theory revisited Y1 - 2017 A1 - Matteo Gallone A1 - Alessandro Michelangeli A1 - Andrea Ottolini AB - The core results of the so-called KreIn-Visik-Birman theory of self-adjoint extensions of semi-bounded symmetric operators are reproduced, both in their original and in a more modern formulation, within a comprehensive discussion that includes missing details, elucidative steps, and intermediate results of independent interest. UR - http://preprints.sissa.it/handle/1963/35286 U1 - 35591 U2 - Mathematics ER - TY - JOUR T1 - Mean-field quantum dynamics for a mixture of Bose–Einstein condensates JF - Analysis and Mathematical Physics Y1 - 2017 A1 - Alessandro Michelangeli A1 - Alessandro Olgiati AB -We study the effective time evolution of a large quantum system consisting of a mixture of different species of identical bosons in interaction. If the system is initially prepared so as to exhibit condensation in each component, we prove that condensation persists at later times and we show quantitatively that the many-body Schrödinger dynamics is effectively described by a system of coupled cubic non-linear Schrödinger equations, one for each component.

VL - 7 UR - https://doi.org/10.1007/s13324-016-0147-3 ER - TY - CHAP T1 - Remarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian T2 - Advances in Quantum Mechanics: Contemporary Trends and Open Problems Y1 - 2017 A1 - Alessandro Olgiati ED - Alessandro Michelangeli ED - Gianfausto Dell'Antonio AB -The effective dynamics for a Bose-Einstein condensate in the regime of high dilution and subject to an external magnetic field is governed by a magnetic Gross-Pitaevskii equation. We elucidate the steps needed to adapt to the magnetic case the proof of the derivation of the Gross-Pitaevskii equation within the ``projection counting'' scheme.

JF - Advances in Quantum Mechanics: Contemporary Trends and Open Problems PB - Springer International Publishing CY - Cham SN - 978-3-319-58904-6 UR - https://doi.org/10.1007/978-3-319-58904-6_15 ER - TY - RPRT T1 - Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei Y1 - 2017 A1 - Matteo Gallone A1 - Alessandro Michelangeli AB - We derive a classification of the self-adjoint extensions of the three-dimensional Dirac-Coulomb operator in the critical regime of the Coulomb coupling. Our approach is solely based upon the KreĬn-Višik- Birman extension scheme, or also on Grubb's universal classification theory, as opposite to previous works within the standard von Neu- mann framework. This let the boundary condition of self-adjointness emerge, neatly and intrinsically, as a multiplicative constraint between regular and singular part of the functions in the domain of the exten- sion, the multiplicative constant giving also immediate information on the invertibility property and on the resolvent and spectral gap of the extension. UR - http://preprints.sissa.it/handle/1963/35287 U1 - 35592 U2 - Mathematics ER - TY - JOUR T1 - Spectral Properties of the 2+1 Fermionic Trimer with Contact Interactions Y1 - 2017 A1 - Simon Becker A1 - Alessandro Michelangeli A1 - Andrea Ottolini AB - We qualify the main features of the spectrum of the Hamiltonian of point interaction for a three-dimensional quantum system consisting of three point-like particles, two identical fermions, plus a third particle of different species, with two-body interaction of zero range. For arbitrary magnitude of the interaction, and arbitrary value of the mass parameter (the ratio between the mass of the third particle and that of each fermion) above the stability threshold, we identify the essential spectrum, localise and prove the finiteness of the discrete spectrum, qualify the angular symmetry of the eigenfunctions, and prove the monotonicity of the eigenvalues with respect to the mass parameter. We also demonstrate the existence of bound states in a physically relevant regime of masses. PB - SISSA UR - http://preprints.sissa.it/handle/1963/35303 N1 - Partially supported by the 2014-2017 MIUR-FIR grant \Cond-Math: Condensed Matter and Mathematical Physics" code RBFR13WAET (S.B., A.M., A.O.), by the DAAD International Trainership Programme (S.B.), and by a 2017 visiting research fellowship at the International Center for Mathematical Research CIRM, Trento (A.M.). U1 - 35609 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - Multiplicity of self-adjoint realisations of the (2+1)-fermionic model of Ter-Martirosyan--Skornyakov type Y1 - 2016 A1 - Alessandro Michelangeli A1 - Andrea Ottolini AB - We reconstruct the whole family of self-adjoint Hamiltonians of Ter-Martirosyan- Skornyakov type for a system of two identical fermions coupled with a third particle of different nature through an interaction of zero range. We proceed through an operator-theoretic approach based on the self-adjoint extension theory of Kreĭn, Višiik, and Birman. We identify the explicit `Kreĭn-Višik-Birman extension param- eter' as an operator on the `space of charges' for this model (the `Kreĭn space') and we come to formulate a sharp conjecture on the dimensionality of its kernel. Based on our conjecture, for which we also discuss an amount of evidence, we explain the emergence of a multiplicity of extensions in a suitable regime of masses and we re- produce for the first time the previous partial constructions obtained by means of an alternative quadratic form approach. UR - http://urania.sissa.it/xmlui/handle/1963/35267 U1 - 35573 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - Non-linear Schrödinger system for the dynamics of a binary condensate: theory and 2D numerics Y1 - 2016 A1 - Alessandro Michelangeli A1 - Giuseppe Pitton AB - We present a comprehensive discussion of the mathematical framework for binary Bose-Einstein condensates and for the rigorous derivation of their effective dynamics, governed by a system of coupled non-linear Gross-Pitaevskii equations. We also develop in the 2D case a systematic numerical study of the Gross-Pitaevskii systems in a wide range of relevant regimes of population ratios and intra-species and inter-species interactions. Our numerical method is based on a Fourier collocation scheme in space combined with a fourth order integrating factor scheme in time. UR - http://urania.sissa.it/xmlui/handle/1963/35266 U1 - 35572 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - On point interactions realised as Ter-Martirosyan-Skornyakov Hamiltonians Y1 - 2016 A1 - Alessandro Michelangeli A1 - Andrea Ottolini AB - For quantum systems of zero-range interaction we discuss the mathematical scheme within which modelling the two-body interaction by means of the physically relevant ultra-violet asymptotics known as the ``Ter-Martirosyan--Skornyakov condition'' gives rise to a self-adjoint realisation of the corresponding Hamiltonian. This is done within the self-adjoint extension scheme of Krein, Visik, and Birman. We show that the Ter-Martirosyan--Skornyakov asymptotics is a condition of self-adjointness only when is imposed in suitable functional spaces, and not just as a point-wise asymptotics, and we discuss the consequences of this fact on a model of two identical fermions and a third particle of different nature. UR - http://urania.sissa.it/xmlui/handle/1963/35195 U1 - 35489 U2 - Mathematics U4 - 1 U5 - MAT/07 ER - TY - RPRT T1 - A class of Hamiltonians for a three-particle fermionic system at unitarity Y1 - 2015 A1 - Michele Correggi A1 - Gianfausto Dell'Antonio A1 - Domenico Finco A1 - Alessandro Michelangeli A1 - Alessandro Teta AB - We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass $m$, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for $m$ larger than a critical value $m^* \simeq (13.607)^{-1}$ a self-adjoint and lower bounded Hamiltonian $H_0$ can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for $m\in(m^*,m^{**})$, where $m^{**}\simeq (8.62)^{-1}$, there is a further family of self-adjoint and lower bounded Hamiltonians $H_{0,\beta}$, $\beta \in \mathbb{R}$, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide. UR - http://urania.sissa.it/xmlui/handle/1963/34469 N1 - This SISSA preprint is composed of 29 pages and is recorded in PDF format U1 - 34644 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - Global well-posedness of the magnetic Hartree equation with non-Strichartz external fields Y1 - 2015 A1 - Alessandro Michelangeli AB - We study the magnetic Hartree equation with external fields to which magnetic Strichartz estimates are not necessarily applicable. We characterise the appropriate notion of energy space and in such a space we prove the global well-posedness of the associated initial value problem by means of energy methods only. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/34440 U1 - 34567 ER - TY - RPRT T1 - Schödinger operators on half-line with shrinking potentials at the origin Y1 - 2015 A1 - Gianfausto Dell'Antonio A1 - Alessandro Michelangeli AB - We discuss the general model of a Schrödinger quantum particle constrained on a straight half-line with given self-adjoint boundary condition at the origin and an interaction potential supported around the origin. We study the limit when the range of the potential scales to zero and its magnitude blows up. We show that in the limit the dynamics is generated by a self-adjoint negative Laplacian on the half-line, with a possible preservation or modification of the boundary condition at the origin, depending on the magnitude of the scaling and of the strength of the potential. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/34439 U1 - 34566 ER - TY - RPRT T1 - Stability of closed gaps for the alternating Kronig-Penney Hamiltonian Y1 - 2015 A1 - Alessandro Michelangeli A1 - Domenico Monaco AB - We consider the Kronig-Penney model for a quantum crystal with equispaced periodic delta-interactions of alternating strength. For this model all spectral gaps at the centre of the Brillouin zone are known to vanish, although so far this noticeable property has only been proved through a very delicate analysis of the discriminant of the corresponding ODE and the associated monodromy matrix. We provide a new, alternative proof by showing that this model can be approximated, in the norm resolvent sense, by a model of regular periodic interactions with finite range for which all gaps at the centre of the Brillouin zone are still vanishing. In particular this shows that the vanishing gap property is stable in the sense that it is present also for the "physical" approximants and is not only a feature of the idealised model of zero-range interactions. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/34460 U1 - 34629 U2 - Mathematics U4 - 1 ER - TY - RPRT T1 - Stability of the (2+2)-fermionic system with zero-range interaction Y1 - 2015 A1 - Alessandro Michelangeli A1 - Paul Pfeiffer AB - We introduce a 3D model, and we study its stability, consisting of two distinct pairs of identical fermions coupled with a two-body interaction between fermions of different species, whose effective range is essentially zero (a so called (2+2)-fermionic system with zero-range interaction). The interaction is modelled by implementing the the celebrated (and ubiquitous, in the literature of this field) Bethe-Peierls contact condition with given two-body scattering length within the Krein-Visik-Birman theory of extensions of semi-bounded symmetric operators, in order to make the Hamiltonian a well-defined (self-adjoint) physical observable. After deriving the expression for the associated energy quadratic form, we show analytically and numerically that the energy of the model is bounded below, thus describing a stable system. UR - http://urania.sissa.it/xmlui/handle/1963/34474 N1 - This SISSA preprint has 17 pages and recorded in PDF format U1 - 34649 U2 - Mathematics U4 - 1 U5 - MAT/07 ER - TY - RPRT T1 - Translation and adaptation of Birman's paper "On the theory of self-adjoint extensions of positive definite operators" (1956) Y1 - 2015 A1 - Mikhail Khotyakov A1 - Alessandro Michelangeli AB - This is an accurate translation from Russian and adaptation to the modern mathematical jargon of a classical paper by M. Sh. Birman published in 1956, which is still today central in the theory of self-adjoint extensions of semi-bounded operators, and for which yet no English version was available so far. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/34443 U1 - 34570 ER - TY - RPRT T1 - Dynamics on a graph as the limit of the dynamics on a "fat graph" Y1 - 2014 A1 - Gianfausto Dell'Antonio A1 - Alessandro Michelangeli AB - We discuss how the vertex boundary conditions for the dynamics of a quantum particle constrained on a graph emerge in the limit of the dynamics of a particle in a tubular region around the graph (\fat graph") when the transversal section of this region shrinks to zero. We give evidence of the fact that if the limit dynamics exists and is induced by the Laplacian on the graph with certain self-adjoint boundary conditions, such conditions are determined by the possible presence of a zero energy resonance on the fat graph. Pictorially, one may say that in the shrinking limit the resonance acts as a bridge connecting the boundary values at the vertex along the different rays. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/7485 U1 - 7598 ER - TY - JOUR T1 - Stability for a System of N Fermions Plus a Different Particle with Zero-Range Interactions JF - Rev. Math. Phys. 24 (2012), 1250017 Y1 - 2012 A1 - Michele Correggi A1 - Gianfausto Dell'Antonio A1 - Domenico Finco A1 - Alessandro Michelangeli A1 - Alessandro Teta AB - We study the stability problem for a non-relativistic quantum system in\\r\\ndimension three composed by $ N \\\\geq 2 $ identical fermions, with unit mass,\\r\\ninteracting with a different particle, with mass $ m $, via a zero-range\\r\\ninteraction of strength $ \\\\alpha \\\\in \\\\R $. We construct the corresponding\\r\\nrenormalised quadratic (or energy) form $ \\\\form $ and the so-called\\r\\nSkornyakov-Ter-Martirosyan symmetric extension $ H_{\\\\alpha} $, which is the\\r\\nnatural candidate as Hamiltonian of the system. We find a value of the mass $\\r\\nm^*(N) $ such that for $ m > m^*(N)$ the form $ \\\\form $ is closed and bounded from below. As a consequence, $ \\\\form $ defines a unique self-adjoint and bounded from below extension of $ H_{\\\\alpha}$ and therefore the system is stable. On the other hand, we also show that the form $ \\\\form $ is unbounded from below for $ m < m^*(2)$. In analogy with the well-known bosonic case, this suggests that the system is unstable for $ m < m^*(2)$ and the so-called Thomas effect occurs. PB - World Scientific UR - http://hdl.handle.net/1963/6069 U1 - 5955 U2 - Mathematics U3 - Mathematical Physics U4 - -1 ER - TY - JOUR T1 - 1D periodic potentials with gaps vanishing at k=0 JF - Mem. Differential Equations Math. Phys. 47 (2009) 133-158 Y1 - 2009 A1 - Alessandro Michelangeli A1 - Osvaldo Zagordi AB - Appearance of energy bands and gaps in the dispersion relations of a periodic potential is a standard feature of Quantum Mechanics. We investigate the class of one-dimensional periodic potentials for which all gaps vanish at the center of the Brillouin zone. We characterise themthrough a necessary and sufficient condition. Potentials of the form we focus on arise in different fields of Physics, from supersymmetric Quantum Mechanics, to Korteweg-de Vries equation theory and classical diffusion problems. The O.D.E. counterpart to this problem is the characterisation of periodic potentials for which coexistence occurs of linearly independent solutions of the corresponding Schrödinger equation (Hill\\\'s equation). This result is placed in the perspective of the previous related results available in the literature. UR - http://hdl.handle.net/1963/1818 U1 - 2396 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Equivalent definitions of asymptotic 100% B.E.C. JF - Nuovo Cimento B 123 (2008) 181-192 Y1 - 2008 A1 - Alessandro Michelangeli AB - In the mathematical analysis Bose-Einstein condensates, in particular in the study of the quantum dynamics, some kind of factorisation property has been recently proposed as a convenient technical assumption of condensation. After having surveyed both the standard definition of complete Bose-Einstein condensation in the limit of infinitely many particles and some forms of asymptotic factorisation, we prove that these characterisations are equivalent. UR - http://hdl.handle.net/1963/2546 U1 - 1573 U2 - Mathematics U3 - Mathematical Physics ER - TY - RPRT T1 - Bose-Einstein condensation: analysis of problems and rigorous results Y1 - 2007 A1 - Alessandro Michelangeli UR - http://hdl.handle.net/1963/2189 U1 - 2055 U2 - Mathematics U3 - Mathematical Physics ER - TY - RPRT T1 - Reduced density matrices and Bose-Einstein condensation Y1 - 2007 A1 - Alessandro Michelangeli AB - Emergence and applications of the ubiquitous tool of reduced density matrices in the rigorous analysis of Bose Einstein condensation is reviewed, and new related results are added. The need and the nature of scaling limits of infinitely many particles is discussed, which imposes that a physically meaningful and mathematically well-posed definition of asymptotic condensation is placed at the level of marginals.\\nThe topic of correlations in the condensed state is addressed in order to show their influence at this level of marginals, both in the true condensed state and in the suitable trial functions one introduces to approximate the many-body structure and energy. Complete condensation is shown to be equivalently defined at any fixed k-body level, both for pure and mixed states. Further, it is proven to be equivalent to some other characterizations in terms of asymptotic factorization of the many-body state, which are currently present in the literature. UR - http://hdl.handle.net/1963/1986 U1 - 2210 U2 - Mathematics U3 - Mathematical Physics ER - TY - JOUR T1 - Role of scaling limits in the rigorous analysis of Bose-Einstein condensation JF - J. Math. Phys. 48 (2007) 102102 Y1 - 2007 A1 - Alessandro Michelangeli AB - In the context of the rigorous analysis of Bose-Einstein condensation, recent achievements have been obtained in the form of asymptotic results when some appropriate scaling is performed in the Hamiltonian, and the limit of infinite number of particles is taken. In particular, two modified thermodynamic limits of infinite dilution turned out to provide an insight in this analysis, the so-\\ncalled Gross-Pitaevskii limit and the related Tomas-Fermi limit. Here such scalings are discussed with respect to their physical and mathematical motivations, and to the currently known results obtained within this framework. UR - http://hdl.handle.net/1963/1984 U1 - 2212 U2 - Mathematics U3 - Mathematical Physics ER - TY - RPRT T1 - Strengthened convergence of marginals to the cubic nonlinear Schroedinger equation Y1 - 2007 A1 - Alessandro Michelangeli AB - We rewrite a recent derivation of the cubic non-linear Schroedinger equation by Adami, Golse, and Teta in the more natural formof the asymptotic factorisation of marginals at any fixed time and in the trace norm. This is the standard form in which the emergence of the\\nnon-linear effective dynamics of a large system of interacting bosons is\\nproved in the literature. UR - http://hdl.handle.net/1963/1977 U1 - 2218 U2 - Mathematics U3 - Mathematical Physics ER - TY - RPRT T1 - Born approximation in the problem of the rigorous derivation of the Gross-Pitaevskii equation Y1 - 2006 A1 - Alessandro Michelangeli AB - \\\"It has a flavour of Mathematical Physics...\\\"With these words, just few years ago, prof. Di Giacomo\\nused to introduce the topic of the Born approximation within a nonrelativistic potential theory, in his `oversize\\\' course of Theoretical Physics in Pisa. Something maybe too fictitious inside the formal theory of the scattering he was teaching us at that point of the course. Now that I\\\'m (studying to become) a Mathematical Physicist indeed, dealing with such an `exotic tasting\\\' topic, those words come back to the mind, into a new perspective. Here the very recent problem of the rigorous derivation of\\nthe cubic nonlinear Schrödinger equation (the Gross-Pitaevskiî equation) is reviewed and discussed, with respect to the role of the Born approximation that one ends up with in an appropriate scaling limit UR - http://hdl.handle.net/1963/1819 U1 - 2395 U2 - Mathematics U3 - Mathematical Physics ER -