We consider the disintegration of the Lebesgue measure on the graph of a convex function f:\\\\Rn-> \\\\R w.r.t. the partition into its faces, which are convex sets and therefore have a well defined linear dimension, and we prove that each conditional measure is equivalent to the k-dimensional Hausdorff measure of the k-dimensional face on which it is concentrated. The remarkable fact is that a priori the directions of the faces are just Borel and no Lipschitz regularity is known. Notwithstanding that, we also prove that a Green-Gauss formula for these directions holds on special sets.

UR - http://hdl.handle.net/1963/3622 U1 - 682 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On optimality of c-cyclically monotone transference plans JF - Comptes Rendus Mathematique 348 (2010) 613-618 Y1 - 2010 A1 - Stefano Bianchini A1 - Laura Caravenna AB - Abstract. This note deals with the equivalence between the optimality of a transport plan for the Monge-Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems. Resume. Dans la presente note nous decrivons brievement la construction introduite dans [7] a propos de l\\\'equivalence entre l\\\'optimalite d\\\'un plan de transport pour le probleme de Monge-Kantorovich et la condition de monotonie c-cyclique ainsi que d\\\'autres sujets que cela nous amene a aborder. Nous souhaitons mettre en evidence l\\\'hypothese de mesurabilite sur la structure sous-jacente de pre-ordre lineaire. PB - Elsevier UR - http://hdl.handle.net/1963/4023 U1 - 379 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - THES T1 - The Disintegration Theorem and Applications to Optimal Mass Transportation Y1 - 2009 A1 - Laura Caravenna PB - SISSA UR - http://hdl.handle.net/1963/5900 U1 - 5750 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - RPRT T1 - An existence result for the Monge problem in R^n with norm cost Y1 - 2009 A1 - Laura Caravenna UR - http://hdl.handle.net/1963/3647 U1 - 657 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On the extremality, uniqueness and optimality of transference plans JF - Bull. Inst. Math. Acad. Sin. (N.S.) 4 (2009) 353-458 Y1 - 2009 A1 - Stefano Bianchini A1 - Laura Caravenna AB - We consider the following standard problems appearing in optimal mass transportation theory: when a transference plan is extremal; when a transference plan is the unique transference plan concentrated on a set A,; when a transference plan is optimal. UR - http://hdl.handle.net/1963/3692 U1 - 613 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - An entropy based Glimm-type functional JF - J. Hyperbolic Differ. Equ. 5 (2008) 643-662 Y1 - 2008 A1 - Laura Caravenna PB - World Scientific UR - http://hdl.handle.net/1963/4051 U1 - 351 U2 - Mathematics U3 - Functional Analysis and Applications ER -