We study the lower semicontinuity of some free discontinuity functionals with linear growth defined on the space of functions with bounded deformation. The volume term is convex and depends only on the Euclidean norm of the symmetrized gradient. We introduce a suitable class of surface terms, which make the functional lower semicontinuous with respect to $L^1$ convergence.

PB - De Gruyter VL - 10 ER - TY - JOUR T1 - A lower semicontinuity result for a free discontinuity functional with a boundary term JF - Journal de Mathématiques Pures et Appliquées Y1 - 2017 A1 - Stefano Almi A1 - Gianni Dal Maso A1 - Rodica Toader AB -We study the lower semicontinuity in $GSBV^{p}(\Omega;\mathbb{R}^{m})$ of a free discontinuity functional $\mathcal{F}(u)$ that can be written as the sum of a crack term, depending only on the jump set $S_{u}$, and of a boundary term, depending on the trace of $u$ on $\partial\Omega$. We give sufficient conditions on the integrands for the lower semicontinuity of $\mathcal{F}$. Moreover, we prove a relaxation result, which shows that, if these conditions are not satisfied, the lower semicontinuous envelope of $\mathcal{F}$ can be represented by the sum of two integrals on $S_{u}$ and $\partial\Omega$, respectively.

VL - 108 UR - http://hdl.handle.net/20.500.11767/15979 IS - 6 U1 - 34731 U2 - Mathematics U4 - 1 U5 - MAT/05 ER - TY - JOUR T1 - Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case JF - Calculus of Variations and Partial Differential Equations Y1 - 2016 A1 - Gianni Dal Maso A1 - Gianluca Orlando A1 - Rodica Toader AB -We study the asymptotic behavior of a variational model for damaged elasto-plastic materials in the case of antiplane shear. The energy functionals we consider depend on a small parameter $\varepsilon$, which forces damage concentration on regions of codimension one. We determine the $\Gamma$-limit as $\varepsilon$ tends to zero and show that it contains an energy term involving the crack opening.

VL - 55 UR - https://doi.org/10.1007/s00526-016-0981-z ER - TY - RPRT T1 - Existence for constrained dynamic Griffith fracture with a weak maximal dissipation condition Y1 - 2015 A1 - Gianni Dal Maso A1 - Cristopher J. Larsen A1 - Rodica Toader AB - There are very few existence results for fracture evolution, outside of globally minimizing quasi-static evolutions. Dynamic evolutions are particularly problematic, due to the difficulty of showing energy balance, as well as of showing that solutions obey a maximal dissipation condition, or some similar condition that prevents stationary cracks from always being solutions. Here we introduce a new weak maximal dissipation condition and show that it is compatible with cracks constrained to grow smoothly on a smooth curve. In particular, we show existence of dynamic fracture evolutions satisfying this maximal dissipation condition, subject to the above smoothness constraints, and exhibit explicit examples to show that this maximal dissipation principle can indeed rule out stationary cracks as solutions. UR - http://urania.sissa.it/xmlui/handle/1963/35045 U1 - 35277 U2 - Mathematics U4 - 1 U5 - MAT/05 ER - TY - JOUR T1 - Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length Y1 - 2014 A1 - Gianni Dal Maso A1 - Gianluca Orlando A1 - Rodica Toader KW - cracked domains, energy release rate, higher order derivatives, asymptotic expansion of solutions AB -We consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.

PB - SISSA UR - http://hdl.handle.net/1963/7271 U1 - 7316 U2 - Mathematics U4 - 1 U5 - MAT/05 ANALISI MATEMATICA ER - TY - JOUR T1 - Quasi-static crack growth in hydraulic fracture JF - Nonlinear Analysis Y1 - 2014 A1 - Stefano Almi A1 - Gianni Dal Maso A1 - Rodica Toader AB -We present a variational model for the quasi-static crack growth in hydraulic fracture in the framework of the energy formulation of rate-independent processes. The cracks are assumed to lie on a prescribed plane and to satisfy a very weak regularity assumption.

PB - Elsevier VL - 109 UR - http://hdl.handle.net/20.500.11767/17350 IS - Nov U1 - 34741 U2 - Mathematics U4 - 1 U5 - MAT/05 ER - TY - RPRT T1 - Rate-independent damage in thermo-viscoelastic materials with inertia Y1 - 2014 A1 - Giuliano Lazzaroni A1 - Riccarda Rossi A1 - Marita Thomas A1 - Rodica Toader AB - We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio-Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is Independent of temperature. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/7444 U1 - 7542 ER - TY - RPRT T1 - Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics Y1 - 2014 A1 - Giuliano Lazzaroni A1 - Riccarda Rossi A1 - Marita Thomas A1 - Rodica Toader AB - This note deals with the analysis of a model for partial damage, where the rateindependent, unidirectional flow rule for the damage variable is coupled with the rate-dependent heat equation, and with the momentum balance featuring inertia and viscosity according to Kelvin-Voigt rheology. The results presented here combine the approach from Roubicek [1] with the methods from Lazzaroni/Rossi/Thomas/Toader [2] and extend the analysis to the setting of inhomogeneous time-dependent Dirichlet data. PB - SISSA UR - http://urania.sissa.it/xmlui/handle/1963/7463 U1 - 7566 ER - TY - JOUR T1 - A variational model for the quasi-static growth of fractional dimensional brittle fractures Y1 - 2014 A1 - Simone Racca A1 - Rodica Toader KW - Variational models AB -We propose a variational model for the irreversible quasi-static evolution of brittle fractures having fractional Hausdorff dimension in the setting of two-dimensional antiplane and plane elasticity. The evolution along such irregular crack paths can be obtained as $\Gamma$-limit of evolutions along one-dimensional cracks when the fracture toughness tends to zero.

PB - European Mathematical Society UR - http://hdl.handle.net/1963/6983 U1 - 6973 U2 - Mathematics U4 - -1 ER - TY - JOUR T1 - Some remarks on the viscous approximation of crack growth JF - Discrete Contin. Dyn. Syst. Ser. S Y1 - 2013 A1 - Giuliano Lazzaroni A1 - Rodica Toader KW - Variational models AB -We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity obtained in [16] by a vanishing viscosity approach, with free (but regular enough) crack path. We underline in particular the motivations for the choice of the class of admissible cracks and of the dissipation potential. Moreover, we extend the result to a model with applied forces depending on time.

PB - SISSA VL - 6 UR - http://hdl.handle.net/1963/4206 U1 - 3945 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - Energy release rate and stress intensity factor in antiplane elasticity JF - Journal de Mathematiques Pures et Appliquees 95 (2011) 565-584 Y1 - 2011 A1 - Giuliano Lazzaroni A1 - Rodica Toader AB - In the setting of antiplane linearized elasticity, we show the existence of the stress intensity factor and its relation with the energy release rate when the crack path is a C1,1 curve. Finally, we show that the energy release rate is continuous with respect to the Hausdorff convergence in a class of admissible cracks. PB - Elsevier UR - http://hdl.handle.net/1963/3780 U1 - 546 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A MODEL FOR CRACK PROPAGATION BASED ON VISCOUS APPROXIMATION JF - {MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES} Y1 - 2011 A1 - Giuliano Lazzaroni A1 - Rodica Toader KW - Brittle fracture KW - Crack propagation KW - energy derivative KW - energy release rate KW - free-discontinuity problems KW - Griffith's criterion KW - local minimizers KW - stress intensity factor} KW - vanishing viscosity KW - {Variational models AB -{In the setting of antiplane linearized elasticity, we show the existence of quasistatic evolutions of cracks in brittle materials by using a vanishing viscosity approach, thus taking into account local minimization. The main feature of our model is that the path followed by the crack need not be prescribed a priori: indeed, it is found as the limit (in the sense of Hausdorff convergence) of curves obtained by an incremental procedure. The result is based on a continuity property for the energy release rate in a suitable class of admissible cracks.}

PB - {WORLD SCIENTIFIC PUBL CO PTE LTD} CY - {5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE} VL - {21} ER - TY - JOUR T1 - Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach JF - ESAIM: COCV 17 (2011) 1-27 Y1 - 2011 A1 - Filippo Cagnetti A1 - Rodica Toader AB - A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [6] is recovered. In this case, the convergence of the discrete time approximations is improved. PB - Cambridge University Press / EDP Sciences UR - http://hdl.handle.net/1963/2355 U1 - 1662 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic crack growth in elasto-plastic materials: the two-dimensional case JF - Arch. Ration. Mech. Anal. 196 (2010) 867-906 Y1 - 2010 A1 - Gianni Dal Maso A1 - Rodica Toader AB - We study a variational model for the quasistatic evolution of elasto-plastic materials with cracks in the case of planar small strain associative elasto-plasticity. UR - http://hdl.handle.net/1963/2964 U1 - 1736 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Decomposition results for functions with bounded variation JF - Boll. Unione Mat. Ital. (9) 1 (2008) 497-505 Y1 - 2008 A1 - Gianni Dal Maso A1 - Rodica Toader PB - Unione Matematica Italiana UR - http://hdl.handle.net/1963/3535 U1 - 729 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On a notion of unilateral slope for the Mumford-Shah functional JF - NoDEA 13 (2007) 713-734 Y1 - 2007 A1 - Gianni Dal Maso A1 - Rodica Toader AB - In this paper we introduce a notion of unilateral slope for the Mumford-Shah functional, and provide an explicit formula in the case of smooth cracks. We show that the slope is not lower semicontinuous and study the corresponding relaxed functional. UR - http://hdl.handle.net/1963/2059 U1 - 2137 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - An artificial viscosity approach to quasistatic crack growth Y1 - 2006 A1 - Rodica Toader A1 - Chiara Zanini AB - We introduce a new model of irreversible quasistatic crack growth in which the evolution of cracks is the limit of a suitably modified $\\\\epsilon$-gradient flow of the energy functional, as the \\\"viscosity\\\" parameter $\\\\epsilon$ tends to zero. UR - http://hdl.handle.net/1963/1850 U1 - 2367 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic Crack Growth in Nonlinear Elasticity JF - Arch. Ration. Mech. Anal. 176 (2005) 165-225 Y1 - 2005 A1 - Gianni Dal Maso A1 - Gilles A. Francfort A1 - Rodica Toader AB - In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [15]. We consider the case of $n$-dimensional finite elasticity, for an arbitrary $n\\\\ge1$, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time. UR - http://hdl.handle.net/1963/2293 U1 - 1723 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasi-static evolution in brittle fracture: the case of bounded solutions JF - Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 Y1 - 2004 A1 - Gianni Dal Maso A1 - Gilles A. Francfort A1 - Rodica Toader AB - The main steps of the proof of the existence result for the quasi-static evolution of cracks in brittle materials, obtained in [7] in the vector case and for a general quasiconvex elastic energy, are presented here under the simplifying assumption that the minimizing sequences involved in the problem are uniformly bounded in $L^\\\\infty$. UR - http://hdl.handle.net/1963/2229 U1 - 2015 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A note on the integral representation of functionals in the space SBD(O) JF - Rend. Mat. Appl. 23 (2003) 189-201 Y1 - 2003 A1 - Francois Ebobisse A1 - Rodica Toader AB - In this paper we study the integral representation in the space SBD(O) of special functions with bounded deformation of some L^1-norm lower semicontinuous functionals invariant with respect to rigid motions. PB - Rendiconti di Matematica UR - http://hdl.handle.net/1963/3064 U1 - 1269 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A model for the quasi-static growth of a brittle fracture: existence and approximation results JF - Math. Models Methods Appl. Sci., 12 (2002), no. 12, 1773 Y1 - 2002 A1 - Gianni Dal Maso A1 - Rodica Toader AB - We study a variant of the variational model for the quasi-static growth of brittle fractures proposed by Francfort and Marigo.9 The main feature of our model is that, in the discrete-time formulation, in each step we do not consider absolute minimizers of the energy, but, in a sense, we look for local minimizers which are sufficiently close to the approximate solution obtained in the previous step. This is done by introducing in the variational problem an additional term which penalizes the L2-distance between the approximate solutions at two consecutive times. We study the continuous-time version of this model, obtained by passing to the limit as the time step tends to zero, and show that it satisfies (for almost every time) some minimality conditions which are slightly different from those considered in Refs. 9 and 8, but are still enough to prove (under suitable regularity assumptions on the crack path) that the classical Griffith\\\'s criterion holds at the crack tips. We also prove that, if no initial crack is present and if the data of the problem are sufficiently smooth, no crack will develop in this model, provided the penalization term is large enough. PB - SISSA Library UR - http://hdl.handle.net/1963/1571 U1 - 2547 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A model for the quasi-static growth of brittle fractures based on local minimization JF - Math.Models Methods Appl. Sci., 12 (2002) , p.1773-1800. Y1 - 2002 A1 - Gianni Dal Maso A1 - Rodica Toader AB - We study a variant of the variational model for the quasi-static growth of brittle fractures proposed by Francfort and Marigo.9 The main feature of our model is that, in the discrete-time formulation, in each step we do not consider absolute minimizers of the energy, but, in a sense, we look for local minimizers which are sufficiently close to the approximate solution obtained in the previous step. This is done by introducing in the variational problem an additional term which penalizes the L2-distance between the approximate solutions at two consecutive times. We study the continuous-time version of this model, obtained by passing to the limit as the time step tends to zero, and show that it satisfies (for almost every time) some minimality conditions which are slightly different from those considered in Refs. 9 and 8, but are still enough to prove (under suitable regularity assumptions on the crack path) that the classical Griffith\\\'s criterion holds at the crack tips. We also prove that, if no initial crack is present and if the data of the problem are sufficiently smooth, no crack will develop in this model, provided the penalization term is large enough. PB - SISSA Library UR - http://hdl.handle.net/1963/1621 U1 - 2497 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results JF - Arch. Ration. Mech. Anal. 162 (2002) 101-135 Y1 - 2002 A1 - Gianni Dal Maso A1 - Rodica Toader AB - We give a precise mathematical formulation of a variational model for the irreversible quasi-static evolution of brittle fractures proposed by G.A. Francfort and J.-J. Marigo, and based on Griffith\\\'s theory of crack growth. In the two-dimensional case we prove an existence result for the quasi-static evolution and show that the total energy is an absolutely continuous function of time, although we can not exclude that the bulk energy and the surface energy may present some jump discontinuities. This existence result is proved by a time discretization process, where at each step a global energy minimization is performed, with the constraint that the new crack contains all cracks formed at the previous time steps. This procedure provides an effective way to approximate the continuous time evolution. PB - Springer UR - http://hdl.handle.net/1963/3056 U1 - 1277 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - THES T1 - Some Problems in the Asymptotic Analysis of Partial Differential Equations in Perforated Domains Y1 - 1997 A1 - Rodica Toader KW - Dirichlet problems PB - SISSA UR - http://hdl.handle.net/1963/5698 U1 - 5541 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - A capacity method for the study of Dirichlet problems for elliptic systems in varying domains JF - Rend. Sem. Mat. Univ. Padova 96 (1996), 257--277 Y1 - 1996 A1 - Gianni Dal Maso A1 - Rodica Toader PB - SISSA Library UR - http://hdl.handle.net/1963/989 U1 - 2867 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Limits of Dirichlet problems in perforated domains: a new formulation JF - Rend. Istit. Mat. Univ. Trieste 26 (1994) 339-360 Y1 - 1994 A1 - Gianni Dal Maso A1 - Rodica Toader PB - Università degli Studi di Trieste, Dipartimento di Scienze Matematiche UR - http://hdl.handle.net/1963/3649 U1 - 656 U2 - Mathematics U3 - Functional Analysis and Applications ER -