TY - JOUR
T1 - Crepant resolutions of weighted projective spaces and quantum deformations
JF - This article will be published in 2011 in the \"Nagoya Mathematical Journal\" Volume 201, March 2011, Pages 1-22, under the title \"Computing certain Gromov-Witten invariants of the crepant resolution of P{double-strock}(1, 3, 4, 4)
Y1 - 2011
A1 - Samuel Boissiere
A1 - Etienne Mann
A1 - Fabio Perroni
AB - We compare the Chen-Ruan cohomology ring of the weighted projective spaces\r\n$\\IP(1,3,4,4)$ and $\\IP(1,...,1,n)$ with the cohomology ring of their crepant\r\nresolutions. In both cases, we prove that the Chen-Ruan cohomology ring is\r\nisomorphic to the quantum corrected cohomology ring of the crepant resolution\r\nafter suitable evaluation of the quantum parameters. For this, we prove a\r\nformula for the Gromov-Witten invariants of the resolution of a transversal\r\n${\\rm A}_3$ singularity.
PB - SISSA
UR - http://hdl.handle.net/1963/6514
N1 - Exposition improved, new title, typos corrected. The section\r\n concerning the model for the orbifold Chow ring has been removed (appears now\r\n in our new preprint 0709.4559)
U1 - 6463
U2 - Mathematics
U4 - 1
U5 - MAT/03 GEOMETRIA
ER -
TY - JOUR
T1 - A model for the orbifold Chow ring of weighted projective spaces
JF - Comm. Algebra 37 (2009) 503-514
Y1 - 2009
A1 - Samuel Boissiere
A1 - Etienne Mann
A1 - Fabio Perroni
AB - We construct an isomorphism of graded Frobenius algebras between the orbifold Chow ring of weighted projective spaces and graded algebras of groups of roots of the unity.
PB - Taylor and Francis
UR - http://hdl.handle.net/1963/3589
U1 - 711
U2 - Mathematics
U3 - Mathematical Physics
ER -
TY - JOUR
T1 - The cohomological crepant resolution conjecture for P(1,3,4,4)
Y1 - 2007
A1 - Samuel Boissiere
A1 - Fabio Perroni
A1 - Etienne Mann
AB - We prove the cohomological crepant resolution conjecture of Ruan for the\r\nweighted projective space P(1,3,4,4). To compute the quantum corrected\r\ncohomology ring we combine the results of Coates-Corti-Iritani-Tseng on\r\nP(1,1,1,3) and our previous results.
PB - SISSA
UR - http://hdl.handle.net/1963/6513
N1 - 11 pages, 1 figure
U1 - 6464
U2 - Mathematics
U4 - 1
U5 - MAT/03 GEOMETRIA
ER -