*Peristalsis*, i.e., a motion pattern arising from the propagation of muscle contraction and expansion waves along the body, is a common locomotion strategy for limbless animals. Mimicking peristalsis in bio-inspired robots has attracted considerable attention in the literature. It has recently been observed that maximal velocity in a metameric earthworm-like robot is achieved by actuating the segments using a “phase coordination” principle. This paper shows that, in fact, peristalsis (which requires not only phase coordination, but also that all segments oscillate at same frequency and amplitude) emerges from optimization principles. More precisely, basing our analysis on the assumption of small deformations, we show that peristaltic waves provide the optimal actuation solution in the ideal case of a periodic infinite system, and that this is approximately true, modulo edge effects, for the real, finite length system. Therefore, this paper confirms the effectiveness of mimicking peristalsis in bio-inspired robots, at least in the small-deformation regime. Further research will be required to test the effectiveness of this strategy if large deformations are allowed.

We discuss connections between low-Reynolds-number swimming and geometric control theory, and present a general algorithm for the numerical computation of energetically optimal strokes. As an illustration of our approach, we show computed motility maps and optimal strokes for two model swimmers.

JF - Natural locomotion in fluids and on surfaces : swimming, flying, and sliding / editors Stephen Childress, Anette Hosoi, William W. Schultz, and Z. Jane Wang, editors, PB - Springer SN - 9781461439967 UR - http://hdl.handle.net/1963/6445 U1 - 6381 U2 - Mathematics U4 - 1 U5 - MAT/08 ANALISI NUMERICA ER - TY - JOUR T1 - Numerical Strategies for Stroke Optimization of Axisymmetric Microswimmers JF - Mathematical Models and Methods in Applied Sciences 21 (2011) 361-387 Y1 - 2011 A1 - François Alouges A1 - Antonio DeSimone A1 - Luca Heltai KW - Optimal swimming AB - We propose a computational method to solve optimal swimming problems, based on the boundary integral formulation of the hydrodynamic interaction between swimmer and surrounding fluid and direct constrained minimization of the energy consumed by the swimmer. We apply our method to axisymmetric model examples. We consider a classical model swimmer (the three-sphere swimmer of Golestanian et al.) as well as a novel axisymmetric swimmer inspired by the observation of biological micro-organisms. PB - World Scientific UR - http://hdl.handle.net/1963/3657 U1 - 648 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Optimally swimming Stokesian Robots Y1 - 2010 A1 - François Alouges A1 - Antonio DeSimone A1 - Luca Heltai A1 - Aline Lefebvre A1 - Benoit Merlet AB - We study self propelled stokesian robots composed of assemblies of balls, in dimen-\\nsions 2 and 3, and prove that they are able to control their position and orientation. This is a result of controllability, and its proof relies on applying Chow\\\'s theorem in an analytic framework, similarly to what has been done in [3] for an axisymmetric system swimming along the axis of symmetry. However, we simplify drastically\\nthe analyticity result given in [3] and apply it to a situation where more complex swimmers move either in a plane or in three-dimensional space, hence experiencing also rotations. We then focus our attention on energetically optimal strokes, which we are able to compute numerically. Some examples of computed optimal strokes are discussed in detail. UR - http://hdl.handle.net/1963/3929 U1 - 472 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - CHAP T1 - Biological Fluid Dynamics, Non-linear Partial Differential Equations T2 - Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554 Y1 - 2009 A1 - Antonio DeSimone A1 - François Alouges A1 - Aline Lefebvre JF - Encyclopedia of Complexity and Systems Science / Robert A. Meyers (ed.). - Springer, 2009, 548-554 UR - http://hdl.handle.net/1963/2630 U1 - 1493 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Optimal Strokes for Low Reynolds Number Swimmers: An Example JF - J. Nonlinear Sci. 18 (2008) 277-302 Y1 - 2008 A1 - François Alouges A1 - Antonio DeSimone A1 - Aline Lefebvre AB - Swimming, i.e., being able to advance in the absence of external forces by performing cyclic shape changes, is particularly demanding at low Reynolds numbers. This is the regime of interest for micro-organisms and micro- or nano-robots. We focus in this paper on a simple yet representative example: the three-sphere swimmer of Najafi and Golestanian (Phys. Rev. E, 69, 062901-062904, 2004). For this system, we show how to cast the problem of swimming in the language of control theory, prove global controllability (which implies that the three-sphere swimmer can indeed swim), and propose a numerical algorithm to compute optimal strokes (which turn out to be suitably defined sub-Riemannian geodesics). PB - Springer UR - http://hdl.handle.net/1963/4006 U1 - 396 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Energetics and switching of quasi-uniform states in small ferromagnetic particles JF - M2AN Math. Model. Numer. Anal. 38 (2004) 235-248 Y1 - 2004 A1 - François Alouges A1 - Sergio Conti A1 - Antonio DeSimone A1 - Ivo Pokern AB - We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and code. We then turn to switching of small cubic or almost-cubic particles, in the single-domain limit. Our data show systematic deviations from the Stoner-Wohlfarth model due to the non-ellipsoidal shape of the particle, and in particular a non-monotone dependence on the particle size. PB - EDP Sciences UR - http://hdl.handle.net/1963/2999 U1 - 1334 U2 - Mathematics U3 - Functional Analysis and Applications ER -