We derive from first principles the experimentally observed effective dynamics of a spinor Bose gas initially prepared as a Bose–Einstein condensate and then left free to expand ballistically. In spinor condensates, which represent one of the recent frontiers in the manipulation of ultra-cold atoms, particles interact with a two-body spatial interaction and a spin–spin interaction. The effective dynamics is well-known to be governed by a system of coupled semi-linear Schrödinger equations: we recover this system, in the sense of marginals in the limit of infinitely many particles, with a mean-field re-scaling of the many-body Hamiltonian. When the resulting control of the dynamical persistence of condensation is quantified with the parameters of modern observations, we obtain a bound that remains quite accurate for the whole typical duration of the experiment.

PB - IOP Publishing VL - 51 UR - https://doi.org/10.1088%2F1751-8121%2Faadbc2 ER - TY - CHAP T1 - Effective Non-linear Dynamics of Binary Condensates and Open Problems T2 - Advances in Quantum Mechanics: Contemporary Trends and Open Problems Y1 - 2017 A1 - Alessandro Olgiati ED - Alessandro Michelangeli ED - Gianfausto Dell'Antonio AB -We report on a recent result concerning the effective dynamics for a mixture of Bose-Einstein condensates, a class of systems much studied in physics and receiving a large amount of attention in the recent literature in mathematical physics; for such models, the effective dynamics is described by a coupled system of non-linear Schödinger equations. After reviewing and commenting our proof in the mean-field regime from a previous paper, we collect the main details needed to obtain the rigorous derivation of the effective dynamics in the Gross-Pitaevskii scaling limit.

JF - Advances in Quantum Mechanics: Contemporary Trends and Open Problems PB - Springer International Publishing CY - Cham SN - 978-3-319-58904-6 UR - https://doi.org/10.1007/978-3-319-58904-6_14 ER - TY - JOUR T1 - Equivalent definitions of asymptotic 100% B.E.C. JF - Nuovo Cimento B 123 (2008) 181-192 Y1 - 2008 A1 - Alessandro Michelangeli AB - In the mathematical analysis Bose-Einstein condensates, in particular in the study of the quantum dynamics, some kind of factorisation property has been recently proposed as a convenient technical assumption of condensation. After having surveyed both the standard definition of complete Bose-Einstein condensation in the limit of infinitely many particles and some forms of asymptotic factorisation, we prove that these characterisations are equivalent. UR - http://hdl.handle.net/1963/2546 U1 - 1573 U2 - Mathematics U3 - Mathematical Physics ER -