In finite element formulations, transport dominated problems are often stabilised through the Streamline-Upwind-Petrovâ€“Galerkin (SUPG) method. Its application is straightforward when the problem at hand is solved using Galerkin methods. Applications of boundary integral formulations often resort to collocation techniques which are computationally more tractable. In this framework, the Galerkin method and the stabilisation may still be used to successfully apply boundary conditions and resolve instabilities that are frequently observed in transport dominated problems. We apply this technique to an adaptive collocation boundary element method for the solution of stationary potential flows, where we solve a mixed Poisson problem in boundary integral form, with the addition of linearised free surface boundary conditions. We use a mixed boundary element formulation to allow for different finite dimensional spaces describing the flow potential and its normal derivative, and we validate our method simulating the flow around both a submerged body and a surface piercing body. The coupling of mixed surface finite elements and strongly consistent stabilisation techniques with boundary elements opens up the possibility to use non conformal unstructured grids with local refinement, without introducing the inconsistencies of other stabilisation techniques based on up-winding and finite difference schemes.

UR - http://urania.sissa.it/xmlui/handle/1963/34466 U1 - 34640 U2 - Mathematics U4 - 1 U5 - MAT/08 ER - TY - Generic T1 - A fully nonlinear potential model for ship hydrodynamics directly interfaced with CAD data structures T2 - Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan, 2014 Y1 - 2014 A1 - Andrea Mola A1 - Luca Heltai A1 - Antonio DeSimone KW - ship hydrodynamics AB - We present a model for ship hydrodynamics simulations currently under development at SISSA. The model employs potential flow theory and fully nonlinear free surface boundary conditions. The spatial discretization of the equations is performed by means of a collocation BEM. This gives rise to a Differential Algbraic Equations (DAE) system, solved using an implicit BDF scheme to time advance the solution. The model has been implemented into a C++ software able to automatically generate the computational grids from the CAD geometry of the hull. Numerical results on Kriso KCS and KVLCC2 hulls are presented and discussed. JF - Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan, 2014 PB - SISSA U1 - 7357 U2 - Mathematics U4 - 1 U5 - MAT/08 ANALISI NUMERICA ER - TY - JOUR T1 - Fluidâ€“structure interaction problems in free surface flows: Application to boat dynamics JF - International Journal for Numerical Methods in Fluids Y1 - 2008 A1 - L. Formaggia A1 - Edie Miglio A1 - Andrea Mola A1 - N Parolini PB - Wiley VL - 56 UR - https://doi.org/10.1002/fld.1583 ER -