In this paper we consider the following Toda system of equations on a compact surface:−Δu1=2ρ1(h1eu1∫Σh1eu1dVg−1)−ρ2(h2eu2∫Σh2eu2dVg−1)−Δu1=−4π∑j=1mα1,j(δpj−1),−Δu2=2ρ2(h2eu2∫Σh2eu2dVg−1)−ρ1(h1eu1∫Σh1eu1dVg−1)−Δu2=−4π∑j=1mα2,j(δpj−1), which is motivated by the study of models in non-abelian Chern–Simons theory. Here h1,h2 are smooth positive functions, ρ1,ρ2 two positive parameters, pi points of the surface and α1,i,α2,j non-negative numbers. We prove a general existence result using variational methods. The same analysis applies to the following mean field equation−Δu=ρ1(heu∫ΣheudVg−1)−ρ2(he−u∫Σhe−udVg−1), which arises in fluid dynamics."

VL - 285 UR - http://www.sciencedirect.com/science/article/pii/S0001870815003072 ER - TY - JOUR T1 - Ground states of nonlinear Schroedinger equations with potentials vanishing at infinity JF - J. Eur. Math. Soc. 7 (2005) 117-144 Y1 - 2005 A1 - Antonio Ambrosetti A1 - Veronica Felli A1 - Andrea Malchiodi AB - We deal with a class on nonlinear Schr\\\\\\\"odinger equations \\\\eqref{eq:1} with potentials $V(x)\\\\sim |x|^{-\\\\a}$, $0<\\\\a<2$, and $K(x)\\\\sim |x|^{-\\\\b}$, $\\\\b>0$. Working in weighted Sobolev spaces, the existence of ground states $v_{\\\\e}$ belonging to $W^{1,2}(\\\\Rn)$ is proved under the assumption that $p$ satisfies \\\\eqref{eq:p}. Furthermore, it is shown that $v_{\\\\e}$ are {\\\\em spikes} concentrating at a minimum of ${\\\\cal A}=V^{\\\\theta}K^{-2/(p-1)}$, where $\\\\theta= (p+1)/(p-1)-1/2$. UR - http://hdl.handle.net/1963/2352 U1 - 1664 U2 - Mathematics U3 - Functional Analysis and Applications ER -