We study the lower semicontinuity of some free discontinuity functionals with linear growth defined on the space of functions with bounded deformation. The volume term is convex and depends only on the Euclidean norm of the symmetrized gradient. We introduce a suitable class of surface terms, which make the functional lower semicontinuous with respect to $L^1$ convergence.

PB - De Gruyter VL - 10 ER - TY - JOUR T1 - A lower semicontinuity result for a free discontinuity functional with a boundary term JF - Journal de Mathématiques Pures et Appliquées Y1 - 2017 A1 - Stefano Almi A1 - Gianni Dal Maso A1 - Rodica Toader AB -We study the lower semicontinuity in $GSBV^{p}(\Omega;\mathbb{R}^{m})$ of a free discontinuity functional $\mathcal{F}(u)$ that can be written as the sum of a crack term, depending only on the jump set $S_{u}$, and of a boundary term, depending on the trace of $u$ on $\partial\Omega$. We give sufficient conditions on the integrands for the lower semicontinuity of $\mathcal{F}$. Moreover, we prove a relaxation result, which shows that, if these conditions are not satisfied, the lower semicontinuous envelope of $\mathcal{F}$ can be represented by the sum of two integrals on $S_{u}$ and $\partial\Omega$, respectively.

VL - 108 UR - http://hdl.handle.net/20.500.11767/15979 IS - 6 U1 - 34731 U2 - Mathematics U4 - 1 U5 - MAT/05 ER - TY - JOUR T1 - Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length Y1 - 2014 A1 - Gianni Dal Maso A1 - Gianluca Orlando A1 - Rodica Toader KW - cracked domains, energy release rate, higher order derivatives, asymptotic expansion of solutions AB -We consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.

PB - SISSA UR - http://hdl.handle.net/1963/7271 U1 - 7316 U2 - Mathematics U4 - 1 U5 - MAT/05 ANALISI MATEMATICA ER - TY - JOUR T1 - Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions JF - Ann. Inst. H. Poincare Anal. Non Lineaire Y1 - 2012 A1 - Virginia Agostiniani A1 - Gianni Dal Maso A1 - Antonio DeSimone KW - Nonlinear elasticity AB -The energy functional of linear elasticity is obtained as G-limit of suitable rescalings of the energies of finite elasticity...

PB - Gauthier-Villars;Elsevier VL - 29 UR - http://hdl.handle.net/1963/4267 U1 - 3996 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - Linearized elasticity as gamma-limit of finite elasticity JF - Set-Valued Anal. 10 (2002), p.165-183 Y1 - 2002 A1 - Gianni Dal Maso A1 - Matteo Negri A1 - Danilo Percivale PB - Springer UR - http://hdl.handle.net/1963/3052 U1 - 1281 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets JF - J. Math. Pures Appl. 79, 2 (2000) 141-162 Y1 - 2000 A1 - Gianni Dal Maso A1 - Maria Giovanna Mora A1 - Massimiliano Morini PB - SISSA Library UR - http://hdl.handle.net/1963/1261 U1 - 3194 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient JF - Nonlinear Analysis, Theory, Methods and Applications. Volume 37, Issue 6, September 1999, Pages 707-717 Y1 - 1999 A1 - Gianni Dal Maso A1 - Vladimir V. Goncharov A1 - Antonio Ornelas AB - A constructive and improved version of the proof that there exist a continuous map that solves the convexified problem is presented. A Lipschitz continuous map is analyzed such that a map vector minimizes the functional at each vector satisfying Cellina\\\'s condition of existence of minimum. This map is explicitly given by a direct constructive algorithm. PB - SISSA UR - http://hdl.handle.net/1963/6439 U1 - 6379 U2 - Mathematics U4 - 1 U5 - MAT/05 ANALISI MATEMATICA ER - TY - JOUR T1 - Limits of variational problems for Dirichlet forms in varying domains JF - Journal des Mathematiques Pures et Appliquees. Volume 77, Issue 1, January 1998, Pages 89-116 Y1 - 1998 A1 - Gianni Dal Maso A1 - Virginia De Cicco A1 - Lino Notarantonio A1 - Nicoletta A. Tchou PB - SISSA UR - http://hdl.handle.net/1963/6440 U1 - 6377 U2 - Mathematics U4 - 1 U5 - MAT/05 ANALISI MATEMATICA ER - TY - JOUR T1 - Limits of Dirichlet problems in perforated domains: a new formulation JF - Rend. Istit. Mat. Univ. Trieste 26 (1994) 339-360 Y1 - 1994 A1 - Gianni Dal Maso A1 - Rodica Toader PB - Università degli Studi di Trieste, Dipartimento di Scienze Matematiche UR - http://hdl.handle.net/1963/3649 U1 - 656 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Limits of obstacle problems for the area functional. JF - Partial differential equations and the calculus of variations : essays in honor of Ennio De Giorgi. - Boston : Birkhauser, 1989. - p. 285-309 Y1 - 1989 A1 - Gianni Dal Maso A1 - G. Carere A1 - Antonio Leaci A1 - Eduardo Pascali PB - SISSA Library UR - http://hdl.handle.net/1963/577 U1 - 3327 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Limits of nonlinear Dirichlet problems in varying domains. JF - Manuscripta Math. 61 (1988), no. 3, 251-278. Y1 - 1988 A1 - Gianni Dal Maso A1 - Anneliese Defranceschi AB - We study the general form of the limit, in the sense of gamma-convergence, of a sequence of nonlinear variational problems in varying domains with Dirichlet boudary conditions. The asymptotic problem is characterized in terms of the limit of suitable nonlinear capacities associated to the domains. PB - SISSA Library UR - http://hdl.handle.net/1963/536 U1 - 3368 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Limits of nonlinear Dirichlet problems in varying domains. (Italian) JF - Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81, 1987, no. 2, 111-118 Y1 - 1987 A1 - Gianni Dal Maso A1 - Anneliese Defranceschi PB - SISSA Library UR - http://hdl.handle.net/1963/486 U1 - 3418 U2 - Mathematics U3 - Functional Analysis and Applications ER -