In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, ‘breathing-like’ deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

VL - 84 UR - http://www.sciencedirect.com/science/article/pii/S0022509615300430 ER - TY - JOUR T1 - Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions JF - Ann. Inst. H. Poincare Anal. Non Lineaire Y1 - 2012 A1 - Virginia Agostiniani A1 - Gianni Dal Maso A1 - Antonio DeSimone KW - Nonlinear elasticity AB -The energy functional of linear elasticity is obtained as G-limit of suitable rescalings of the energies of finite elasticity...

PB - Gauthier-Villars;Elsevier VL - 29 UR - http://hdl.handle.net/1963/4267 U1 - 3996 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER -