We report on the connections between noncommutative principal circle bundles, Pimsner algebras and strongly graded algebras. We illustrate several results with examples of quantum weighted projective and lens spaces and θ-deformations.

JF - Noncommutative Analysis, Operator Theory and Applications PB - Springer International Publishing CY - Cham SN - 978-3-319-29116-1 UR - https://doi.org/10.1007/978-3-319-29116-1_1 ER - TY - JOUR T1 - Pimsner algebras and Gysin sequences from principal circle actions JF - Journal of Noncommutative Geometry Y1 - 2016 A1 - Francesca Arici A1 - Jens Kaad A1 - Giovanni Landi VL - 10 UR - http://hdl.handle.net/2066/162951 ER - TY - THES T1 - Principal circle bundles, Pimsner algebras and Gysin sequences Y1 - 2015 A1 - Francesca Arici AB - Principal circle bundles and Gysin sequences play a crucial role in mathematical physics, in particular in Chern-Simons theories and T-duality. This works focuses on the noncommutative topology of principal circle bundles: we investigate the connections between noncommutative principal circle bundles, Pimsner algebras and strongly graded algebras. At the C*-algebraic level, we start from a self-Morita equivalence bimodule E for a C*-algebra B which we think of as a non commutative line bundle over the `base space’ algebra B. The corresponding Pimsner algebra O_E, is then the total space algebra of an associated circle bundle. A natural six term exact sequence, an analogue of the Gysin sequence for circle bundles, relates the KK-theories of O_E and of the base space B. We illustrate several results with the examples of quantum weighted projective and lens spaces. PB - SISSA U1 - 34744 U2 - Mathematics U4 - 1 U5 - MAT/07 ER -