We present a variational model for the quasi-static crack growth in hydraulic fracture in the framework of the energy formulation of rate-independent processes. The cracks are assumed to lie on a prescribed plane and to satisfy a very weak regularity assumption.

PB - Elsevier VL - 109 UR - http://hdl.handle.net/20.500.11767/17350 IS - Nov U1 - 34741 U2 - Mathematics U4 - 1 U5 - MAT/05 ER - TY - JOUR T1 - Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes JF - Journal of Dynamics and Differential Equations Y1 - 2014 A1 - Gianni Dal Maso A1 - Riccardo Scala AB -We introduce a model of dynamic visco-elasto-plastic evolution in the linearly elastic regime and prove an existence and uniqueness result. Then we study the limit of (a rescaled version of) the solutions when the data vary slowly. We prove that they converge, up to a subsequence, to a quasistatic evolution in perfect plasticity.

VL - 26 UR - https://doi.org/10.1007/s10884-014-9409-7 ER - TY - JOUR T1 - Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution JF - Calculus of variations and partial differential equations 44 (2012) 495-541 Y1 - 2012 A1 - Gianni Dal Maso A1 - Antonio DeSimone A1 - Francesco Solombrino AB -Cam-Clay plasticity is a well established model for the description of the mechanics of fine grained soils. As solutions can develop discontinuities in time, a weak notion of solution, in terms of a rescaled time s , has been proposed in [8] to give a meaning to this discontinuous evolution. In this paper we first prove that this rescaled evolution satisfies the flow-rule for the rate of plastic strain, in a suitable measure-theoretical sense. In the second part of the paper we consider the behavior of the evolution in terms of the original time variable t . We prove that the unrescaled solution satisfies an energy-dissipation balance and an evolution law for the internal variable, which can be expressed in terms of integrals depending only on the original time. Both these integral identities contain terms concentrated on the jump times, whose size can only be determined by looking at the rescaled formulation.

PB - Springer UR - http://hdl.handle.net/1963/3900 U1 - 809 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling JF - Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 Y1 - 2011 A1 - Gianni Dal Maso A1 - Antonio DeSimone A1 - Francesco Solombrino KW - Cam-Clay plasticity AB -Cam-Clay nonassociative plasticity exhibits both hardening and softening behaviour, depending on the loading. For many initial data the classical formulation of the quasistatic evolution problem has no smooth solution. We propose here a notion of generalized solution, based on a viscoplastic approximation. To study the limit of the viscoplastic evolutions we rescale time, in such a way that the plastic strain is uniformly Lipschitz with respect to the rescaled time. The limit of these rescaled solutions, as the viscosity parameter tends to zero, is characterized through an energy-dissipation balance, that can be written in a natural way using the rescaled time. As shown in [4] and [6], the proposed solution may be discontinuous with respect to the original time. Our formulation allows to compute the amount of viscous dissipation occurring instantaneously at each discontinuity time.

PB - Springer UR - http://hdl.handle.net/1963/3670 U1 - 635 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic crack growth in elasto-plastic materials: the two-dimensional case JF - Arch. Ration. Mech. Anal. 196 (2010) 867-906 Y1 - 2010 A1 - Gianni Dal Maso A1 - Rodica Toader AB - We study a variational model for the quasistatic evolution of elasto-plastic materials with cracks in the case of planar small strain associative elasto-plasticity. UR - http://hdl.handle.net/1963/2964 U1 - 1736 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic crack growth in finite elasticity with non-interpenetration JF - Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 257-290 Y1 - 2010 A1 - Gianni Dal Maso A1 - Giuliano Lazzaroni AB -We present a variational model to study the quasistatic growth of brittle cracks in hyperelastic materials, in the framework of finite elasticity, taking\\ninto account the non-interpenetration condition.

UR - http://hdl.handle.net/1963/3397 U1 - 935 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case JF - Netw. Heterog. Media 5 (2010) 97-132 Y1 - 2010 A1 - Gianni Dal Maso A1 - Francesco Solombrino KW - Cam-Clay plasticity AB -We study the spatially uniform case of the problem of quasistatic evolution in small strain nonassociative elastoplasticity (Cam-Clay model). Through the introdution of a viscous approximation, the problem reduces to determine the limit behavior of the solutions of a singularly perturbed system of ODE\\\'s in a finite dimensional Banach space. Depending on the sign of two explicit scalar indicators, we see that the limit dynamics presents, under quite generic assumptions, the alternation of three possible regimes: the elastic regime, when the limit equation is just the equation of linearized elasticity, the slow dynamics, when the strain evolves smoothly on the yield surface and plastic flow is produced, and the fast dynamics, which may happen only in the softening regime, where\\nviscous solutions exhibit a jump across a heteroclinic orbit of an auxiliary system.

UR - http://hdl.handle.net/1963/3671 U1 - 634 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions JF - Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 Y1 - 2009 A1 - Gianni Dal Maso A1 - Antonio DeSimone AB - We study a quasistatic evolution problem for Cam-Clay plasticity under a special loading program which leads to spatially homogeneous solutions. Under some initial conditions, the solutions exhibit a softening behaviour and time discontinuities.\\nThe behavior of the solutions at the jump times is studied by a viscous approximation. UR - http://hdl.handle.net/1963/3395 U1 - 937 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Quasistatic crack growth for a cohesive zone model with prescribed crack path Y1 - 2007 A1 - Gianni Dal Maso A1 - Chiara Zanini AB - In this paper we study the quasistatic crack growth for a cohesive zone model. We assume that the crack path is prescribed and we study the time evolution of the crack in the framework of the variational theory of rate-independent processes. JF - Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253-279 UR - http://hdl.handle.net/1963/1686 U1 - 2447 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic evolution problems for pressure-sensitive plastic materials JF - Milan J. Math. 75 (2007) 117-134 Y1 - 2007 A1 - Gianni Dal Maso A1 - Alexey Demyanov A1 - Antonio DeSimone AB - We study quasistatic evolution problems for pressure-sensitive plastic materials in the context of small strain associative perfect plasticity. UR - http://hdl.handle.net/1963/1962 U1 - 2231 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic evolution problems for linearly elastic-perfectly plastic materials JF - Arch. Ration. Mech. Anal. 180 (2006) 237-291 Y1 - 2006 A1 - Gianni Dal Maso A1 - Antonio DeSimone A1 - Maria Giovanna Mora AB - The problem of quasistatic evolution in small strain associative elastoplasticity is studied in the framework of the variational theory for rate-independent processes. Existence of solutions is proved through the use of incremental variational problems in spaces of functions with bounded deformation. This provides a new approximation result for the solutions of the quasistatic evolution problem, which are shown to be absolutely continuous in time. Four equivalent formulations of the problem in rate form are derived. A strong formulation of the flow rule is obtained by introducing a precise definition of the stress on the singular set of the plastic strain. UR - http://hdl.handle.net/1963/2129 U1 - 2114 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasistatic Crack Growth in Nonlinear Elasticity JF - Arch. Ration. Mech. Anal. 176 (2005) 165-225 Y1 - 2005 A1 - Gianni Dal Maso A1 - Gilles A. Francfort A1 - Rodica Toader AB - In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [15]. We consider the case of $n$-dimensional finite elasticity, for an arbitrary $n\\\\ge1$, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time. UR - http://hdl.handle.net/1963/2293 U1 - 1723 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Quasi-static evolution in brittle fracture: the case of bounded solutions JF - Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 Y1 - 2004 A1 - Gianni Dal Maso A1 - Gilles A. Francfort A1 - Rodica Toader AB - The main steps of the proof of the existence result for the quasi-static evolution of cracks in brittle materials, obtained in [7] in the vector case and for a general quasiconvex elastic energy, are presented here under the simplifying assumption that the minimizing sequences involved in the problem are uniformly bounded in $L^\\\\infty$. UR - http://hdl.handle.net/1963/2229 U1 - 2015 U2 - Mathematics U3 - Functional Analysis and Applications ER -