TY - JOUR
T1 - Solutions of vectorial Hamilton-Jacobi equations and minimizers of nonquasiconvex functionals
JF - J. Math. Anal. Appl. 335 (2007) 1143-1160
Y1 - 2007
A1 - Sandro Zagatti
AB - We provide a unified approach to prove existence results for the Dirichlet problem for Hamilton-Jacobi equations and for the minimum problem for nonquasiconvex functionals of the Calculus of Variations with affine boundary data. The idea relies on the definition of integro-extremal solutions introduced in the study of nonconvex scalar variational problem.
UR - http://hdl.handle.net/1963/2763
U1 - 1937
U2 - Mathematics
U3 - Functional Analysis and Applications
ER -
TY - THES
T1 - Some Problems in the Calculus of the Variations
Y1 - 1992
A1 - Sandro Zagatti
KW - Calculus of variations
PB - SISSA
UR - http://hdl.handle.net/1963/5428
U1 - 5260
U2 - Mathematics
U3 - Functional Analysis and Applications
U4 - -1
ER -