Let $u_t+f(u)_x=0$ be a strictly hyperbolic, genuinely nonlinear system of conservation laws of Temple class. In this paper, a continuous semigroup of solutions is constructed on a domain of $L^\infty$ functions, with possibly unbounded variation. Trajectories depend Lipschitz continuously on the initial data, in the $L^1$ distance. Moreover, we show that a weak solution of the Cauchy problem coincides with the corresponding semigroup trajectory if and only if it satisfies an entropy condition of Oleinik type, concerning the decay of positive waves.

%B Differential Integral Equations 13 (2000) 1503-1528 %I Khayyam Publishing %G en_US %U http://hdl.handle.net/1963/3256 %1 1445 %2 Mathematics %3 Functional Analysis and Applications %$ Submitted by Andrea Wehrenfennig (andreaw@sissa.it) on 2008-11-06T13:16:51Z\\nNo. of bitstreams: 1\\nTemple.pdf: 221742 bytes, checksum: a13773198af84c04068cf3021f12d3c8 (MD5)