We prove the existence of a weak global in time mean curvature flow of a bounded partition of space using the method of minimizing movements. The result is extended to the case when suitable driving forces are present. We also prove some consistency results for a minimizing movement solution with smooth and viscosity solutions when the evolution starts from a partition made by a union of bounded sets at a positive distance. In addition, the motion starting from the union of convex sets at a positive distance agrees with the classical mean curvature flow and is stable with respect to the Hausdorff convergence of the initial partitions.

%B SIAM Journal on Mathematical Analysis %V 50 %P 4117-4148 %G eng %U https://doi.org/10.1137/17M1159294 %R 10.1137/17M1159294